【題目】在△ABC中,設(shè)角A,B,C的對邊分別為a,b,c,向量=(cosA,sinA),=(﹣sinA,cosA),若=1.
(1)求角A的大;
(2)若b=4 , 且c=a,求△ABC的面積.

【答案】解:(1)∵=(cosA,sinA),=(﹣sinA,cosA),且=1,
cosA﹣sinAcosA+sinAcosA=1,
∴cosA=,
則A=;
(2)∵cosA=,b=4,c=a,
∴由余弦定理得:a2=b2+c2﹣2bccosA=32+2a2﹣8a,
解得:a=4,c=a=8,
則S△ABC=bcsinA=×4×8×=16.
【解析】(1)由兩向量的坐標(biāo)利用平面向量數(shù)量積運算化簡已知等式,整理后求出cosA的值,即可確定出A的度數(shù);
(2)利用余弦定理列出關(guān)系式,將cosA,b,c=a代入求出a的值,進(jìn)而求出c的值,利用三角形面積公式即可求出三角形ABC面積.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形中, , ,四邊形為矩形, ,平面平面,點為線段中點.

(Ⅰ)求異面直線所成的角的正切值;

(Ⅱ)求證:平面平面;

(Ⅲ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是一個正方體的展開圖,如果將它還原為正方體,那么NC、DE、AF、BM這四條線段所在的直線是異面直線的有多少對?試以其中一對為例進(jìn)行證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是矩形,面底面,且是邊長為的等邊三角形, , 上,且∥面BDM.

(1)求直線PC與平面BDM所成角的正弦值;

(2)求平面BDM與平面PAD所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來隨著我國在教育科研上的投入不斷加大,科學(xué)技術(shù)得到迅猛發(fā)展,國內(nèi)企業(yè)的國際競爭力得到大幅提升.伴隨著國內(nèi)市場增速放緩,國內(nèi)有實力企業(yè)紛紛進(jìn)行海外布局,第二輪企業(yè)出海潮到來.如在智能手機行業(yè),國產(chǎn)品牌已在趕超國外巨頭,某品牌手機公司一直默默拓展海外市場,在海外共設(shè)多個分支機構(gòu),需要國內(nèi)公司外派大量后、后中青年員工.該企業(yè)為了解這兩個年齡層員工是否愿意被外派工作的態(tài)度,按分層抽樣的方式從后和后的員工中隨機調(diào)查了位,得到數(shù)據(jù)如下表:

愿意被外派

不愿意被外派

合計

合計

(Ⅰ)根據(jù)調(diào)查的數(shù)據(jù),是否有以上的把握認(rèn)為“是否愿意被外派與年齡有關(guān)”,并說明理由;

(Ⅱ)該公司舉行參觀駐海外分支機構(gòu)的交流體驗活動,擬安排名參與調(diào)查的后、后員工參加.后員工中有愿意被外派的人和不愿意被外派的人報名參加,從中隨機選出人,記選到愿意被外派的人數(shù)為;后員工中有愿意被外派的人和不愿意被外派的人報名參加,從中隨機選出人,記選到愿意被外派的人數(shù)為,求的概率

參考數(shù)據(jù):

(參考公式:,其中).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) (為常數(shù), 為自然對數(shù)的底數(shù)).

(Ⅰ)當(dāng)時,討論函數(shù)在區(qū)間上極值點的個數(shù);

(Ⅱ)當(dāng), 時,對任意的都有成立,求正實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=-x2+2x-3.

(1)求f(x)在區(qū)間[2a-1,2]上的最小值g(a);

(2)求g(a)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=2ax2﹣2bx﹣a+b(a,b∈R,a>0),g(x)=2ax﹣2b
(1)若時,求f(sinθ)的最大值;
(2)設(shè)a>0時,若對任意θ∈R,都有|f(sinθ)|≤1恒成立,且g(sinθ)的最大值為2,求f(x)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知全集I=R,集合A={x∈R|},集合B是不等式2|x+1|<4的解集,求A∩(CIB).

查看答案和解析>>

同步練習(xí)冊答案