曲線y=x3-2x+1在點(diǎn)(1,2)處的切線方程是( 。
A.y=x+1B.y=-x+1C.y=2x-2D.y=-2x+2
由曲線y=x3-2x+1,得y′=3x2-2,
∴y′|x=1=1.
∴曲線y=x3-2x+1在點(diǎn)(1,2)處的切線方程是y-2=1×(x-1),
整理得:y=x+1.
故選:A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=x3在點(diǎn)x=1處的切線方程是( 。
A.y=3x-2B.y=3x-4C.y=2x-1D.y=2x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=xn,其中n∈Z,n≥2.曲線y=f(x)在點(diǎn)P(x0,f(x0))(x0>0)處的切線為l,l與x軸交于點(diǎn)Q,與y軸交于點(diǎn)R,則
|PQ|
|PR|
=( 。
A.
1
n-1
B.
1
n
C.
2
n-1
D.
2
n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

過拋物線y=x2上的點(diǎn)M(-
1
2
,
1
4
)的切線的傾斜角為(  )
A.
π
4
B.
π
3
C.
4
D.
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2x3+ax與g(x)=bx2+c的圖象都過點(diǎn)p(2,0),且在點(diǎn)p處有相同的切線.
(1)求實(shí)數(shù)a,b,c
(2)設(shè)函數(shù)F(x)=f(x)+g(x),求F(x)在[2,m]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=x3的切線的斜率等于1,則這樣的切線有( 。
A.1條B.2條C.3條D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求曲線y=
1
x
和y=x2在它們交點(diǎn)處的兩條切線與x軸所圍成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

根據(jù)導(dǎo)數(shù)的定義f′(x1)等于( 。
A.
lim
x1→0
f(x1)-f(x0)
x1x0
B.
lim
△x→0
f(x1)-f(x0)
△x
C.
lim
△x→0
f(x1+△x)-f(x1)
△x
D.
lim
x1→0
f(x1+△x)-f(x1)
△x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

點(diǎn)M(m,4)m>0為拋物線x2=2py(p>0)上一點(diǎn),F(xiàn)為其焦點(diǎn),已知|FM|=5,
(1)求m與p的值;
(2)以M點(diǎn)為切點(diǎn)作拋物線的切線,交y軸與點(diǎn)N,求△FMN的面積.

查看答案和解析>>

同步練習(xí)冊答案