【題目】在△ABC中,內(nèi)角A= ,P為△ABC的外心,若 1 +2λ2 ,其中λ1與λ2為實數(shù),則λ12的最大值為(
A.
B.1﹣
C.
D.1+

【答案】B
【解析】解:設(shè)|AB|=c,|AC|=b,
則: = c2 = b2;
又cosA= ,在 1 +2λ2 的兩邊分別乘以 , 得: ;
整理得,
解得, ;
∴λ12=1﹣( + )≤1﹣2 =1﹣ ;
∴λ12的最大值為 1﹣
故選:B
【考點精析】解答此題的關(guān)鍵在于理解基本不等式的相關(guān)知識,掌握基本不等式:,(當且僅當時取到等號);變形公式:,以及對平面向量的基本定理及其意義的理解,了解如果、是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任意向量,有且只有一對實數(shù)、,使

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系xOy中,以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系,P點的極坐標為(3, ).曲線C的參數(shù)方程為ρ=2cos(θ﹣ )(θ為參數(shù)).
(Ⅰ)寫出點P的直角坐標及曲線C的直角坐標方程;
(Ⅱ)若Q為曲線C上的動點,求PQ的中點M到直線l:2ρcosθ+4ρsinθ= 的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題一定正確的是(
A.在等差數(shù)列{an}中,若ap+aq=ar+aδ , 則p+q=r+δ
B.已知數(shù)列{an}的前n項和為Sn , 若{an}是等比數(shù)列,則Sk , S2k﹣Sk , S3k﹣S2k也是等比數(shù)列
C.在數(shù)列{an}中,若ap+aq=2ar , 則ap , ar , aq成等差數(shù)列
D.在數(shù)列{an}中,若ap?aq=a ,則ap , ar , aq成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)在點處取得極值.

(1)求的值;

(2)若有極大值,求上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正項數(shù)列{an}的前n項和為Sn , 且a1=1,an+12=Sn+1+Sn
(1)求{an}的通項公式;
(2)設(shè)bn=a2n﹣1 , 求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,.

(1)時,求;

(2),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在平面坐標系內(nèi),O為坐標原點,向量 =(1,7), =(5,1), =(2,1),點M為直線OP上的一個動點.
(1)當 取最小值時,求向量 的坐標;
(2)在點M滿足(I)的條件下,求∠AMB的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的偶函數(shù),已知時,.

(1)畫出偶函數(shù)的圖像;

(2)指出函數(shù)的單調(diào)遞增區(qū)間及值域;

(3)若直線與函數(shù)恰有個交點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某測試團隊為了研究“飲酒”對“駕車安全”的影響,隨機選取100名駕駛員先后在無酒狀態(tài)、酒后狀態(tài)下進行“停車距離”測試.測試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子完全停下所需要的距離).無酒狀態(tài)與酒后狀態(tài)下的試驗數(shù)據(jù)分別列于表1和表2. 表1

停車距離d(米)

(10,20]

(20,30]

(30,40]

(40,50]

(50,60]

頻數(shù)

26

a

b

8

2

表2

平均每毫升血液酒精含量x毫克

10

30

50

70

90

平均停車距離y米

30

50

60

70

90

已知表1數(shù)據(jù)的中位數(shù)估計值為26,回答以下問題.
(Ⅰ)求a,b的值,并估計駕駛員無酒狀態(tài)下停車距離的平均數(shù);
(Ⅱ)根據(jù)最小二乘法,由表2的數(shù)據(jù)計算y關(guān)于x的回歸方程 ;
(Ⅲ)該測試團隊認為:駕駛員酒后駕車的平均“停車距離”y大于(Ⅰ)中無酒狀態(tài)下的停車距離平均數(shù)的3倍,則認定駕駛員是“醉駕”.請根據(jù)(Ⅱ)中的回歸方程,預測當每毫升血液酒精含量大于多少毫克時為“醉駕”?
(附:對于一組數(shù)據(jù)(x1 , y1),(x2 , y2),…,(xn , yn),其回歸直線 的斜率和截距的最小二乘估計分別為 , .)

查看答案和解析>>

同步練習冊答案