已知函數(shù)f(x)=|2x-1-1|.
(1)作出函數(shù)y=f(x)的圖象;
(2)若a<c,且f(a)>f(c),求證:2a+2c<4.
科目:高中數(shù)學 來源: 題型:解答題
某公司承建扇環(huán)面形狀的花壇如圖所示,該扇環(huán)面花壇是由以點為圓心的兩個同心圓弧、弧以及兩條線段和圍成的封閉圖形.花壇設(shè)計周長為30米,其中大圓弧所在圓的半徑為10米.設(shè)小圓弧所在圓的半徑為米(),圓心角為弧度.
(1)求關(guān)于的函數(shù)關(guān)系式;
(2)在對花壇的邊緣進行裝飾時,已知兩條線段的裝飾費用為4元/米,兩條弧線部分的裝飾費用為9元/米.設(shè)花壇的面積與裝飾總費用的比為,當為何值時,取得最大值?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
甲廠以x千克/小時的速度運輸生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每小時可獲得利潤是100(5x+1-)元.
(1)要使生產(chǎn)該產(chǎn)品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求最大利潤.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=lg(ax-bx)(a>1>b>0).
(1)求函數(shù)y=f(x)的定義域;
(2)在函數(shù)y=f(x)的圖象上是否存在不同的兩點,使過此兩點的直線平行于x軸;
(3)當a、b滿足什么關(guān)系時,f(x)在區(qū)間上恒取正值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
要制作一個如圖的框架(單位:m),要求所圍成的總面積為19.5(m2),其中ABCD是一個矩形,EFCD是一個等腰梯形,梯形高h=AB,tan∠FED=,設(shè)AB=xm,BC=y(tǒng)m.
(1)求y關(guān)于x的表達式;
(2)如何設(shè)計x、y的長度,才能使所用材料最少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知冪函數(shù)y=f(x)經(jīng)過點.
(1)試求函數(shù)解析式;
(2)判斷函數(shù)的奇偶性并寫出函數(shù)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=mx+3,g(x)=x2+2x+m.
(1)求證:函數(shù)f(x)-g(x)必有零點;
(2)設(shè)函數(shù)G(x)=f(x)-g(x)-1,若|G(x)|在[-1,0]上是減函數(shù),求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
定義在R上的函數(shù)及二次函數(shù)滿足:且。
(1)求和的解析式;
(2);
(3)設(shè),討論方程的解的個數(shù)情況.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知函數(shù)f(x)=x2+bx+c(b,c∈R),對任意的x∈R,恒有f′(x)≤f(x).
(1)證明:當x≥0時,f(x)≤(x+c)2;
(2)若對滿足題設(shè)條件的任意b,c,不等式f(c)-f(b)≤M(c2-b2)恒成立,求M的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com