【題目】已知點A是以BC為直徑的圓O上異于B,C的動點,P為平面ABC外一點,且平面PBC⊥平面ABCBC=3,PB=2,PC,則三棱錐PABC外接球的表面積為______

【答案】

【解析】

O為△ABC外接圓的圓心,且平面PBC⊥平面ABC,過O作面ABC的垂線l,則垂線l一定在面PBC內(nèi),可得球心O1一定在面PBC內(nèi),即球心O1也是△PBC外接圓的圓心,

在△PBC中,由余弦定理、正弦定理可得R.

因為O為△ABC外接圓的圓心,且平面PBC⊥平面ABC,過O作面ABC的垂線l,則垂線l一定在面PBC內(nèi),

根據(jù)球的性質(zhì),球心一定在垂線l上,

∵球心O1一定在面PBC內(nèi),即球心O1也是△PBC外接圓的圓心,

在△PBC中,由余弦定理得cosBsinB,

由正弦定理得:,解得R,

∴三棱錐PABC外接球的表面積為sR210π,

故答案為:10π

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P-ABCD的底面是矩形,PA⊥平面ABCDE,F分別是AB,PD的中點,且PA=AD

(Ⅰ)求證:AF∥平面PEC;

(Ⅱ)求證:平面PEC⊥平面PCD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在斜三棱柱ABCA1B1C1中,側(cè)面AA1C1C是菱形,AC1A1C交于點O,點EAB的中點.

(1)求證:OE∥平面BCC1B1.

(2)AC1A1B,求證:AC1BC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】對于函數(shù),若關系式中變量是變量的函數(shù),則稱函數(shù)為可變換函數(shù).例如:對于函數(shù),,所以變量是變量的函數(shù),所以是可變換函數(shù).

(1)求證:反比例函數(shù)不是可變換函數(shù);

(2)試判斷函數(shù)是否是可變換函數(shù)并說明理由;

(3)若函數(shù)為可變換函數(shù)求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設拋物線C:y2=2px(p>0)的焦點為F,點M在C上,|MF|=5,若以MF為直徑的圓過點(0,2),則C的方程為(
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(Ⅰ)若為偶函數(shù),求的值并寫出的增區(qū)間;

(Ⅱ)若關于的不等式的解集為,當時,求的最小值;

(Ⅲ)對任意的,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】平面直角坐標系xOy中,過橢圓M: (a>b>0)右焦點的直線x+y﹣ =0交M于A,B兩點,P為AB的中點,且OP的斜率為
(1)求M的方程
(2)C,D為M上的兩點,若四邊形ACBD的對角線CD⊥AB,求四邊形ACBD面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: 的右焦點為F(3,0),過點F的直線交橢圓E于A、B兩點.若AB的中點坐標為(1,﹣1),則E的方程為( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將函數(shù)f(x)=sinx的圖象向右平移 個單位后得到函數(shù)y=g(x)的圖象,則函數(shù)y=f(x)+g(x)的最大值為

查看答案和解析>>

同步練習冊答案