已知奇函數(shù)f(x)滿足f(x+2)=-f(x),且當x∈(0,1)時,f(x)=2x,則f()的值為 .
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試選修4-5不等式選講 練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)和g(x)的圖象關(guān)于原點對稱,且f(x)=x2+2x.
(1)解關(guān)于x的不等式g(x)≥f(x)-|x-1|;
(2)如果對?x∈R,不等式g(x)+c≤f(x)-|x-1|恒成立,求實數(shù)c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)文二輪專題復(fù)習(xí)與測試解答題保分訓(xùn)練練習(xí)卷(解析版) 題型:解答題
如圖,在幾何體ABCDE中,AB=AD=2,AB⊥AD,AE⊥平面ABD,M為線段BD的中點,MC∥AE,且AE=MC=.
(1)求證:平面BCD⊥平面CDE;
(2)若N為線段DE的中點,求證:平面AMN∥平面BEC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(四)第二章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
函數(shù)f(x)=(x≠-)滿足f(f(x))=x,則常數(shù)c等于( )
(A)3 (B)-3
(C)3或-3 (D)5或-3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(四)第二章第一節(jié)練習(xí)卷(解析版) 題型:選擇題
下列各組函數(shù)中,表示同一函數(shù)的是( )
(A)y=1,y=
(B)y=·,y=
(C)y=x,y=
(D)y=|x|,y=()2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(六)第二章第三節(jié)練習(xí)卷(解析版) 題型:選擇題
若偶函數(shù)f(x)在(-∞,0)上單調(diào)遞減,則不等式f(-1)<f(lgx)的解集是( )
(A)(0,10) (B)(,10)
(C)(,+∞) (D)(0,)∪(10,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(八)第二章第五節(jié)練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=loga(3-ax).
(1)當x∈[0,2]時,函數(shù)f(x)恒有意義,求實數(shù)a的取值范圍.
(2)是否存在這樣的實數(shù)a,使得函數(shù)f(x)在區(qū)間[1,2]上為減函數(shù),并且最大值為1?如果存在,試求出a的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(五)第二章第二節(jié)練習(xí)卷(解析版) 題型:解答題
已知f(x)=(x≠a).
(1)若a=-2,試證f(x)在(-∞,-2)上單調(diào)遞增.
(2)若a>0且f(x)在(1,+∞)上單調(diào)遞減,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)(九)第二章第六節(jié)練習(xí)卷(解析版) 題型:選擇題
設(shè)abc>0,二次函數(shù)f(x)=ax2+bx+c的圖象可能是( )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com