【題目】如圖,四邊形為菱形,四邊形為平行四邊形,設(shè)相交于點(diǎn)

1)證明:平面平面;

2)若與平面所成角為60°,求二面角的余弦值.

【答案】(1)見(jiàn)解析;(2)

【解析】試題分析:(1)根(1)要證面面垂直,需要找線面垂直,本題中重點(diǎn)分析線段,利用條件底面是菱形可得,通過(guò)全等可知,從而,故是平面的垂線,從而得證;(2)涉及二面角的計(jì)算,一般需要建系設(shè)點(diǎn),計(jì)算平面的法向量,利用二面角與法向量夾角之間的關(guān)系處理,需要注意建系時(shí)分析清楚哪三條線互相垂直.

試題解析:

(1)證明:連接,

∵四邊形為菱形,

,

中,

, ,

,

,

,

,

平面,

平面,

∴平面平面;

(2)

解法一:過(guò)垂線,垂足為,連接,易得與面所成的角,

,

,

平面

為二面角的平面角,

可求得,

中由余弦定理可得:

∴二面角的余弦值為;

解法二:如圖,在平面內(nèi),過(guò)的垂線,交點(diǎn),由(1)可知,平面平面,

平面,

∴直線兩兩互相垂直,

分別軸建立空間直角坐標(biāo)系

易得與平面所成的角,∴,

,

設(shè)平面的一個(gè)法向量為,則

,

,且

,可得平面的一個(gè)法向量為

同理可求得平面的一個(gè)法向量為,

∴二面角的余弦值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】解方程ln(2x+1)=ln(x2﹣2);
求函數(shù)f(x)=( 2x+2×( x(x≤﹣1)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知),定義.

(1)求函數(shù)的極值

(2)若,且存在使,求實(shí)數(shù)的取值范圍;

(3)若,試討論函數(shù))的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠家擬在2017年舉行促銷(xiāo)活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷(xiāo)售量(即該廠的年產(chǎn)量)(單位:萬(wàn)件)與年促銷(xiāo)費(fèi)用(單位:萬(wàn)元)()滿足 為常數(shù)),如果不搞促銷(xiāo)活動(dòng),則該產(chǎn)品的年銷(xiāo)售量只能是1萬(wàn)件.已知2017年生產(chǎn)該產(chǎn)品的固定投入為8萬(wàn)元.每生產(chǎn)1萬(wàn)件該產(chǎn)品需要再投入16萬(wàn)元,廠家將每件產(chǎn)品的銷(xiāo)售價(jià)格定為每件產(chǎn)品年平均成本的1.5倍(產(chǎn)品成本包括固定投入和再投入兩部分資金).

(1)將2017年該產(chǎn)品的利潤(rùn)(單位:萬(wàn)元)表示為年促銷(xiāo)費(fèi)用(單位:萬(wàn)元)的函數(shù);

(2)該廠家2017年的促銷(xiāo)費(fèi)用投入多少萬(wàn)元時(shí),廠家的利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知: 、 、 是同一平面上的三個(gè)向量,其中 =(1,2).
(1)若| |=2 ,且 ,求 的坐標(biāo).
(2)若| |= ,且 +2 與2 垂直,求 的夾角θ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】運(yùn)貨卡車(chē)以每小時(shí)千米的速度勻速行駛千米().假設(shè)汽油的價(jià)格是每升元,而汽車(chē)每小時(shí)耗油升,司機(jī)的工資是每小時(shí)元.

(1)求這次行車(chē)總費(fèi)用關(guān)于的表達(dá)式;

(2)當(dāng)為何值時(shí),這次行車(chē)的總費(fèi)用最低?并求出最低費(fèi)用的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù), .

(Ⅰ)若,求在點(diǎn)處的切線方程;

(Ⅱ)討論函數(shù)的單調(diào)性;

(Ⅲ)若存在兩個(gè)極值點(diǎn),求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓與圓,點(diǎn)在圓上,點(diǎn)在圓上.

(1)求的最小值;

(2)直線上是否存在點(diǎn),滿足經(jīng)過(guò)點(diǎn)由無(wú)數(shù)對(duì)相互垂直的直線,它們分別與圓和圓相交,并且直線被圓所截得的弦長(zhǎng)等于直線被圓所截得的弦長(zhǎng)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列命題正確的是(
A.單位向量都相等
B.若 是共線向量, 是共線向量,則 是共線向量
C.| + |=| |,則 =0
D.若 是單位向量,則 =1

查看答案和解析>>

同步練習(xí)冊(cè)答案