已知集合A={x|2<x<4},集合B={x|a<x<2a},若B⊆A,求a的取值.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專(zhuān)題:集合
分析:根據(jù)集合之間的關(guān)系分情況討論∴①a≤0時(shí),B=Φ,此時(shí)滿(mǎn)足B⊆A②a>0時(shí),
a≥2
2a≤4
即B是A的子集,求出a的取值范圍,不要落下B為空集的情況.
解答: 解:∵集合A={x|2<x<4},集合B={x|a<x<2a},若B⊆A,
∴①a≤0時(shí),B=Φ,此時(shí)滿(mǎn)足B⊆A
②a>0時(shí),
a≥2
2a≤4

∴a=2
綜上所述,a的取值為a≤0或a=2
點(diǎn)評(píng):本題主要考查集合的基本運(yùn)算,屬于基礎(chǔ)題.要正確判斷兩個(gè)集合間包含的關(guān)系,必須對(duì)集合的相關(guān)概念有深刻的理解,善于抓住代表元素,認(rèn)清集合的特征.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)i為虛數(shù)單位,則復(fù)數(shù)(
1+i
1-i
2003+(
1-i
1+i
2004等于( 。
A、1+iB、1-i
C、-1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)化簡(jiǎn):
sin2(α+π)•cos(π+α)•cot(-α-2π)
tan(π+α)•cos3(-α-π)

(2)已知sin(π+α)=
1
2
,求sin(2π-α)-cot(α-π)•cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2αcos2x+bsinxcosx,且f(0)=2,f(
π
3
1
2
+
3
2

(1)求函數(shù)f(x)的單調(diào)減區(qū)間和對(duì)稱(chēng)軸方程;
(2)求函數(shù)f(x)取得最大值和最小值時(shí)對(duì)應(yīng)的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(
x
+
1
2•
4x
n的展開(kāi)式前三項(xiàng)中的x的系數(shù)成等差數(shù)列.
(1)展開(kāi)式中所有的x的有理項(xiàng)為第幾項(xiàng)?
(2)求展開(kāi)式中系數(shù)最大的項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,函數(shù)f(x)=(-x2+ax)ex(x∈R,e為自然對(duì)數(shù)的底數(shù)).問(wèn)函數(shù)f(x)是否為R上的單調(diào)遞減函數(shù)?若是,求出a的取值范圍;若不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

判斷函數(shù)y=
1
2(x-2)2
+1在區(qū)間(2,+∞)內(nèi)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=ax2+bx的圖象過(guò)點(diǎn)(-4n,0),且f′(0)=2n,n∈N*,數(shù)列{an}滿(mǎn)足
1
an+1
=f′(
1
an
)
,且a1=4,
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式
(Ⅱ)記bn=
anan+1
,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2+2,則函數(shù)f(x)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案