【題目】某學(xué)校對甲、乙兩個班級進行了物理測驗,成績統(tǒng)計如下(每班50人):

(1)估計甲班的平均成績;

(2)成績不低于80分記為“優(yōu)秀”.請完成下面的列聯(lián)表,并判斷是否有85%的把握認為:“成績優(yōu)秀”與所在教學(xué)班級有關(guān)?

(3)從兩個班級,成績在的學(xué)生中任選2人,記事件為“選出的2人中恰有1人來自甲班”.求事件的概率.

附:

【答案】(1)80.8;(2)有85%的把握認為“成績優(yōu)秀”與所在教學(xué)班級有關(guān);(3)

【解析】試題分析:(1)在頻率分布直方圖中,平均數(shù)的計算方法:每個小矩形的面積乘以小矩形底邊中點的橫坐標之和,算出甲班的成績;(2)利用已知圖形完成列聯(lián)表,算出卡方約等于,故 85%的把握認為“成績優(yōu)秀”與所在教學(xué)班級有關(guān);(3)采用列舉法求出事件A的概率。

試題解析:(1)估計,甲班的平均成績?yōu)椋?/span>

.

(2)列聯(lián)表如下:

成績優(yōu)秀

成績不優(yōu)秀

總計

甲班

28

22

50

乙班

20

30

50

總計

48

52

100

.

有85%的把握認為“成績優(yōu)秀”與所在教學(xué)班級有關(guān).

(3)成績在內(nèi),甲班的2人分別記為, ;乙班的4人分別記為, , , .

總的基本事件有:

, , , , , , , , , ,共15個.

其中事件包含的基本事件有: , , , , , , ,共8個.

所以.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了解人們對于國家新頒布的“生育二胎放開”政策的熱度,現(xiàn)在某市進行調(diào)查,隨機抽調(diào)了50人,他們年齡的頻數(shù)分布及支持“生育二胎”人數(shù)如下表:

年齡

[5,15)

[15,25)

[25,35)

[35,45)

[45,55)

[55,65)

頻數(shù)

5

10

15

10

5

5

支持“生育二胎”

4

5

12

8

2

1


(1)由以上統(tǒng)計數(shù)據(jù)填下面2×2列聯(lián)表;

年齡不低于45歲的人

年齡低于45歲的人

合計

支持“生育二胎”

a=

c=

不支持“生育二胎”

b=

d=

合計


(2)判斷是否有99%的把握認為以45歲為分界點對“生育二胎放開”政策的支持度有差異.

P(K2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

附表:K2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體ABCDEF中,DE⊥平面ABCD,AD∥BC,平面BCEF∩平面ADEF=EF,∠BAD=60°,AB=AD=2,DE=1.

(1)求證:BC∥EF;
(2)求三棱錐B﹣ADE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)x,y滿足約束條件 ,若目標函數(shù)z=ax+by(a>0,b>0)的最大值為12,則 + 的最小值為(
A.4
B.
C.1
D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)的定義域為(﹣1,1),對任意x,y∈(﹣1,1),有f(x)+f(y)=f( ).且當x<0時,f(x)>0.
(1)驗證函數(shù)f(x)=lg 是否滿足這些條件;
(2)若f( )=1,f( )=2,且|a|<1,|b|<1,求f(a),f(b)的值.
(3)若f(﹣ )=1,試解關(guān)于x的方程f(x)=﹣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)值域是(0,+∞)的是(
A.y=
B.y=( 12x
C.y=
D.y=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)不等式組 表示的平面區(qū)域為D,在區(qū)域D內(nèi)隨機取一個點,則此點到坐標原點的距離小于1的概率是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓E的中心在原點,離心率為 ,右焦點到直線x+y+ =0的距離為2.
(1)求橢圓E的方程;
(2)橢圓下頂點為A,直線y=kx+m(k≠0)與橢圓相交于不同的兩點M、N,當|AM|=|AN|時,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩名運動員參加“選拔測試賽”,在相同條件下,兩人6次測試的成績(單位:分)記錄如下:

甲 86 77 92 72 78 84

乙 78 82 88 82 95 90

(1)用莖葉圖表示這兩組數(shù)據(jù),現(xiàn)要從中選派一名運動員參加比賽,你認為選派誰參賽更好?說明理由(不用計算);

(2)若將頻率視為概率,對運動員甲在今后三次測試成績進行預(yù)測,記這三次成績高于85分的次數(shù)為,求的分布列和數(shù)學(xué)期望及方差.

查看答案和解析>>

同步練習冊答案