函數(shù)f(x)=x(1-x2)在[0,1]上的最大值為
 
考點:利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值
專題:導(dǎo)數(shù)的綜合應(yīng)用
分析:利用導(dǎo)數(shù)的性質(zhì)求解.
解答: 解:∵f(x)=x(1-x2)=x-x3,
∴f′(x)=1-3x2
由f′(x)=0,得x=
3
3
,或x=-
3
3
(舍去),
∵f(0)=0,f(
3
3
)=
3
3
(1-
1
3
)
=
2
3
9
,f(1)=0,
∴f(x)=x(1-x2)在[0,1]上的最大值為
2
3
9

故答案為:
2
3
9
點評:本題考查函數(shù)在閉區(qū)間上的最大值的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意導(dǎo)數(shù)性質(zhì)的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C所對的邊分別為a,b,c,且
cosC
cosB
=
3a-c
b
,
(Ⅰ)求cosB;
(Ⅱ)已知b=2
2
,S△ABC=
2
,求邊長a,c.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x,y滿足約束條件
x≥0
x+2y-3≥0
2x+y-3≤0
,向量
a
=(y,s+x),
b
=(2,-1),且
a
b
,則s的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,港口A北偏東30°方向的C處有一檢查站,港口正東方向的B處有一輪船,距離檢查站7海里,該輪船從B處沿正西方向航行3海里后到達(dá)D處觀測站,已知觀測站與檢查站距離5海里,則此時輪船離港口A有
 
海里.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=-x2+2x+3,g(x)=x+1,那么函數(shù)G(x)=
f(x),f(x)≤g(x)
g(x),f(x)>g(x)
的最大值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若二次函數(shù)f(x)=ax2+2x-a滿足f(0)<f(4)<f(3)<f(2),則a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的通項公式an=-2n2+7n+11,則該數(shù)列第
 
項最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2x3-3x2-12x+5在[0,3]上的最大值為M,最小值為m,則M-m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x-
2
x
(1≤x≤2)的最大值與最小值的和為
 

查看答案和解析>>

同步練習(xí)冊答案