如圖,正方形所在平面與圓所在的平面相交于,線段為圓的弦,垂直于圓所在的平面,垂足為圓上異于的點(diǎn),設(shè)正方形的邊長(zhǎng)為,且.

(1)求證:平面平面;
(2)若異面直線所成的角為,與底面所成角為,二面角所成角為,求證
(1)詳見解析;(2)詳見解析.

試題分析:(1)證明平面平面,即證明平面,轉(zhuǎn)化為證明直線與平面內(nèi)的兩條相交直線垂直;(2)立體幾何中求空間角的方法有兩種,一是常規(guī)法,找出(或作出)適合題意的角;證明找出的角符合對(duì)應(yīng)角的要求;求出相關(guān)角的大。ɑ蛉呛瘮(shù)值).二是用向量法,即先確定兩個(gè)向量(直線的方向向量或平面的法向量)求兩個(gè)向量夾角的余弦值,注意確定所求的夾角與向量夾角的關(guān)系,最后得出所求的角或角的三角函數(shù)值.
試題解析:(1)所在的平面,在圓所在的平面上,
又在正方形中,,,平面,
平面平面平面.
(2)平面,平面,,即為圓的直徑,
,且,,
以點(diǎn)為坐標(biāo)原點(diǎn),分別以軸、軸,以垂直于底面的直線為軸,建立空間直角坐標(biāo)系,則,,
,,,,
,,
由此得
設(shè)平面的一個(gè)法向量,則,即,
,則,又平面的一個(gè)法向量為,
,
于是,即.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在正三棱柱中,,分別為,的中點(diǎn).

(1)求證:平面;
(2)求證:平面平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在長(zhǎng)方體中,,, E、 分別為、的中點(diǎn).

(1)求證:平面;
(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在四棱錐P﹣ABCD中,PA⊥平面ABCD,△ABC是正三角形,AC與BD的交點(diǎn)M恰好是AC中點(diǎn),又PA=AB=4,∠CDA=120°.

(1)求證:BD⊥PC;
(2)設(shè)E為PC的中點(diǎn),點(diǎn)F在線段AB上,若直線EF∥平面PAD,求AF的長(zhǎng);
(3)求二面角A﹣PC﹣B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖①,△BCD內(nèi)接于直角梯形,A1D∥A2A3,A1A2⊥A2A3,A1D=10,A1A2=8,沿△BCD三邊將△A1BD、△A2BC、△A3CD翻折上去,恰好形成一個(gè)三棱錐ABCD,如圖②.

(1)求證:AB⊥CD;
(2)求直線BD和平面ACD所成的角的正切值;
(3)求四面體的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在四棱錐S-ABCD中,底面ABCD是矩形,SA底面ABCD,SA=AD,點(diǎn)M是SD的中點(diǎn),ANSC且交SC于點(diǎn)N.

(Ⅰ)求證:SB∥平面ACM;
(Ⅱ)求證:平面SAC平面AMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在三棱柱中,側(cè)面,均為正方形,∠,點(diǎn)是棱的中點(diǎn).

(Ⅰ)求證:⊥平面;
(Ⅱ)求證:平面;
(Ⅲ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題中,錯(cuò)誤的是 (      )
A.一條直線與兩個(gè)平行平面中的一個(gè)相交,則必與另一個(gè)平面相交
B.平行于同一平面的兩個(gè)不同平面平行
C.如果平面不垂直平面,那么平面內(nèi)一定不存在直線垂直于平面
D.若直線不平行平面,則在平面內(nèi)不存在與平行的直線

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知平面外不共線的三點(diǎn)α的距離都相等,則正確的結(jié)論是(     )
A.平面必平行于
B.平面必與相交
C.平面必不垂直于
D.存在△的一條中位線平行于或在內(nèi)

查看答案和解析>>

同步練習(xí)冊(cè)答案