據(jù)IEC(國際電工委員會)調(diào)查顯示,小型風(fēng)力發(fā)電項目投資較少,且開發(fā)前景廣闊,但受風(fēng)力自然資源影響,項目投資存在一定風(fēng)險.根據(jù)測算,風(fēng)能風(fēng)區(qū)分類標(biāo)準(zhǔn)如下:

假設(shè)投資A項目的資金為≥0)萬元,投資B項目資金為≥0)萬元,調(diào)研結(jié)果是:未來一年內(nèi),位于一類風(fēng)區(qū)的A項目獲利的可能性為,虧損的可能性為;位于二類風(fēng)區(qū)的B項目獲利的可能性為,虧損的可能性是,不賠不賺的可能性是.
(1)記投資A,B項目的利潤分別為,試寫出隨機變量的分布列和期望,;
(2)某公司計劃用不超過萬元的資金投資于A,B項目,且公司要求對A項目的投
資不得低于B項目,根據(jù)(1)的條件和市場調(diào)研,試估計一年后兩個項目的平均利
潤之和的最大值.
(1)詳見解析;(2)15萬元。

試題分析:(1)項目有的可能性獲利,利潤為,有的可能性虧損,虧損額為。項目有的可能性獲,利潤為,有的可能性虧損,虧損額為。有的可能性不賠不賺。據(jù)此可列出分布列,根據(jù)期望公式可求各期望值。(2)根據(jù)已知條件列出線性約束條件,根據(jù)約束條件可求其最值。
試題解析:(1)A項目投資利潤的分布列


B項目投資利潤的分布列

 6分
(2)由題意可知滿足的約束條件為  9分
由(1)可知,
當(dāng),取得最大值15.
∴對A、B項目各投資50萬元,可使公司獲得最大利潤,最大利潤是15萬元.12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(2012•廣東)某班50位學(xué)生期中考試數(shù)學(xué)成績的頻率直方分布圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中x的值;
(2)從成績不低于80分的學(xué)生中隨機選取2人,該2人中成績在90分以上(含90分)的人數(shù)記為ξ,求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙、丙三人參加某次招聘會,假設(shè)甲能被聘用的概率是,甲、丙兩人同時不能被聘用的概率是,乙、丙兩人同時能被聘用的概率為,且三人各自能否被聘用相互獨立.
(1)求乙、丙兩人各自被聘用的概率;
(2)設(shè)為甲、乙、丙三人中能被聘用的人數(shù)與不能被聘用的人數(shù)之差的絕對值,求的分布列與均值(數(shù)學(xué)期望).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

一中食堂有一個面食窗口,假設(shè)學(xué)生買飯所需的時間互相獨立,且都是整數(shù)分鐘,對以往學(xué)生買飯所需的時間統(tǒng)計結(jié)果如下:
買飯時間(分)
1
2
3
4
5
頻率
0.1
0.4
0.3
0.1
0.1
從第一個學(xué)生開始買飯時計時.
(Ⅰ)估計第三個學(xué)生恰好等待4分鐘開始買飯的概率;
(Ⅱ)表示至第2分鐘末已買完飯的人數(shù),求的分布列及數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

A高校自主招生設(shè)置了先后三道程序:部分高校聯(lián)合考試、本校專業(yè)考試、本校面試.在每道程序中,設(shè)置三個成績等級:優(yōu)、良、中.若考生在某道程序中獲得“中”,則該考生在本道程序中不通過,且不能進(jìn)入下面的程序.考生只有全部通過三道程序,自主招生考試才算通過.某中學(xué)學(xué)生甲參加A高校自主招生考試,已知該生在每道程序中通過的概率均為,每道程序中得優(yōu)、良、中的概率分別為p1、、p2.
(1)求學(xué)生甲不能通過A高校自主招生考試的概率;
(2)設(shè)X為學(xué)生甲在三道程序中獲優(yōu)的次數(shù),求X的概率分布及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某地位于甲、乙兩條河流的交匯處,根據(jù)統(tǒng)計資料預(yù)測,今年汛期甲河流發(fā)生洪水的概率為0.25,乙河流發(fā)生洪水的概率為0.18(假設(shè)兩河流發(fā)生洪水與否互不影響).現(xiàn)有一臺大型設(shè)備正在該地工作,為了保護(hù)設(shè)備,施工部門提出以下三種方案:
方案1:運走設(shè)備,此時需花費4000元;
方案2:建一保護(hù)圍墻,需花費1000元,但圍墻只能抵御一個河流發(fā)生的洪水,當(dāng)兩河流同時發(fā)生洪水時,設(shè)備仍將受損,損失約56000元;
方案3:不采取措施,此時,當(dāng)兩河流都發(fā)生洪水時損失達(dá)60000元,只有一條河流發(fā)生洪水時,損失為10000元.
(1)試求方案3中損失費X(隨機變量)的分布列;
(2)試比較哪一種方案好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙等五名大運會志愿者被隨機分到A、BC、D四個不同的崗位服務(wù),每個崗位至少有一名志愿者.
(1)求甲、乙兩人同時參加A崗位服務(wù)的概率;
(2)求甲、乙兩人不在同一崗位服務(wù)的概率;
(3)設(shè)隨機變量ξ為這五名志愿者中參加A崗位服務(wù)的人數(shù),求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

2013年4月20日8時02分四川省雅安市蘆山縣(北緯30.3,東經(jīng)103.0)發(fā)生7.0級地震。一方有難,八方支援,重慶眾多醫(yī)務(wù)工作者和志愿者加入了抗災(zāi)救援行動。其中重慶某醫(yī)院外科派出由5名骨干醫(yī)生組成的救援小組,奔赴受災(zāi)第一線參與救援。現(xiàn)將這5名醫(yī)生分別隨機分配到受災(zāi)最嚴(yán)重的蘆山、寶山、天全三縣中的某一個。
(1)求每個縣至少分配到一名醫(yī)生的概率。
(2)若將隨機分配到蘆山縣的人數(shù)記為,求隨機變量的分布列,期望和方差。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

袋中有大小相同的三個球,編號分別為1,2,2,從袋中每次取出一個球,若取到球的編號為奇數(shù),則取球停止,用X表示所有被取到的球的編號之和,則X的方差為________.

查看答案和解析>>

同步練習(xí)冊答案