【題目】已知函數(shù),,.
(1)求函數(shù)的單調(diào)增區(qū)間;
(2)令,且函數(shù)有三個彼此不相等的零點0,m,n,其中.
①若,求函數(shù)在處的切線方程;
②若對,恒成立,求實數(shù)t的去取值范圍.
【答案】(1)單調(diào)增區(qū)間是,;(2)①,②或
【解析】
(1)先求得函數(shù),對函數(shù)求導(dǎo),令大于零,解不等式即可求得單調(diào)增區(qū)間;
(2)易知,,①求出,的值,進而求得切線方程;②由對,恒成立,可得,分與兩種情況討論,從而可求得的取值范圍.
(1)∵,
∴
∴,令,得或.
∴的單調(diào)增區(qū)間是,.
(2)由方程,得m,n是方程的兩實根,故,,且由判別式得.
①若,得,,故,得,
因此,故函數(shù)在處的切線方程為.
②若對任意的,都有成立,所以.
因為,,所以或.
當(dāng)時,對有,所以,解得.又因為,得,則有;
當(dāng)時,,則存在的極大值點,且.
由題意得,將代入得進而得到,得.
又因為,得.
綜上可知t的取值范圍是或.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線的焦點為橢圓的右焦點,C的準線與E交于P,Q兩點,且.
(1)求E的方程;
(2)過E的左頂點A作直線l交E于另一點B,且BO(O為坐標(biāo)原點)的延長線交E于點M,若直線AM的斜率為1,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=ex(x+1)2,令f1(x)=f'(x),fn+1(x)=fn'(x),若fn(x)=ex(anx2+bnx+cn),記數(shù)列{}的前n項和為Sn,則下列選項中與S2019的值最接近的是( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,離心率為,為橢圓上一動點(異于左右頂點),面積的最大值為.
(1)求橢圓的方程;
(2)若直線與橢圓相交于點兩點,問軸上是否存在點,使得是以為直角頂點的等腰直角三角形?若存在,求點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在新高考改革中,打破了文理分科的“”模式,不少省份采用了“”,“”,“”等模式.其中“”模式的操作又更受歡迎,即語數(shù)外三門為必考科目,然后在物理和歷史中選考一門,最后從剩余的四門中選考兩門.某校為了了解學(xué)生的選科情況,從高二年級的2000名學(xué)生(其中男生1100人,女生900人)中,采用分層抽樣的方法從中抽取n名學(xué)生進行調(diào)查.
(1)已知抽取的n名學(xué)生中含男生110人,求n的值及抽取到的女生人數(shù);
(2)在(1)的情況下對抽取到的n名同學(xué)“選物理”和“選歷史”進行問卷調(diào)查,得到下列2×2列聯(lián)表.請將列聯(lián)表補充完整,并判斷是否有99%的把握認為選科目與性別有關(guān)?
選物理 | 選歷史 | 合計 | |
男生 | 90 | ||
女生 | 30 | ||
合計 |
(3)在(2)的條件下,從抽取的“選歷史”的學(xué)生中按性別分層抽樣再抽取5名,再從這5名學(xué)生中抽取2人了解選政治、地理、化學(xué)、生物的情況,求2人至少有1名男生的概率.
參考公式:.
0.10 | 0.010 | 0.001 | |
2.706 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】雙曲線E:(,)的左、右焦點分別為,,已知點為拋物線C:的焦點,且到雙曲線E的一條漸近線的距離為,又點P為雙曲線E上一點,滿足.則
(1)雙曲線的標(biāo)準方程為______;
(2)的內(nèi)切圓半徑與外接圓半徑之比為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面四邊形中,E,F是,中點,,,,將沿對角線折起至,使平面平面,則四面體中,下列結(jié)論不正確的是( )
A.平面B.異面直線與所成的角為90°
C.異面直線與所成的角為60°D.直線與平面所成的角為30°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】[選修4-4:極坐標(biāo)與參數(shù)方程]
在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;
(2)若射線 與曲線交于,兩點,與曲線交于,兩點,求取最大值時的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com