如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD= 60°。
(1)求證:平面PBD⊥平面PAC;
(2)求點(diǎn)A到平面PBD的距離;
(3)求二面角B—PC—A的大小。(14分)
(1)略(2)(3)
【解析】(1) 證:…4分
(2) 解:連結(jié)PO,過(guò)A作AE⊥PO,平面PAC平面PBD=PO
∴AE⊥平面PBD,AE就是所求的距離,計(jì)算得……8分
(3) 解:過(guò)O作OF⊥PC,連BF,∵OB⊥平面PAC,由三垂線(xiàn)定理,PC⊥BF,
∴∠OFB為二面角B-PC-A的平面角,經(jīng)計(jì)算得,,,
∴
∴,所求二面角大小為…14分
解法二:如圖,以A原點(diǎn),AB為軸正方向,建立空間直角坐標(biāo)系,則,,
過(guò)D作DE⊥AB于E,則DE=ADsin60°=, AE=ADcos60°=1,∴,,
(1)設(shè)是平面PBD的法向量,則,
又,∴令則,,∴
設(shè)是平面PAC的法向量,則,又,∴
|
(2)所求距離為
(3)設(shè)是平面PBC的法向量,則,
又,∴令則,,∴
,即二面角B-PC-A的大小為 .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com