【題目】如圖所示,正三角形的邊長為2, 分別在三邊和上, 為的中點(diǎn), .
(Ⅰ)當(dāng)時(shí),求的大;
(Ⅱ)求的面積的最小值及使得取最小值時(shí)的值.
【答案】(Ⅰ)(Ⅱ)當(dāng)時(shí), 取最小值
【解析】試題分析:本題主要考查正弦定理、直角三角形中正切的定義、兩角和的正弦公式、倍角公式、三角形面積公式等基礎(chǔ)知識(shí),考查學(xué)生的分析問題解決問題的能力、轉(zhuǎn)化能力、計(jì)算能力.第一問,在中, ,①,而在中,利用正弦定理,用表示,在中,利用正弦定理,用表示,代入到①式中,再利用兩角和的正弦公式展開,解出,利用特殊角的三角函數(shù)值求角;第二問,將第一問得到的和代入到三角形面積公式中,利用兩角和的正弦公式和倍角公式化簡表達(dá)式,利用正弦函數(shù)的有界性確定的最小值.
試題解析:在中,由正弦定理得,在中,由正弦定理得.由,得,整理得,所以.
(2)=
.
當(dāng)時(shí), 取最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=在點(diǎn)(1,1)處的切線方程為x+y=2.
(1)求a,b的值;
(2)對(duì)函數(shù)f(x)定義域內(nèi)的任一個(gè)實(shí)數(shù)x,不等式f(x)-<0恒成立,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某單位的食堂中,食堂每天以10元/斤的價(jià)格購進(jìn)米粉,然后以4.4元/碗的價(jià)格出售,每碗內(nèi)含米粉0.2斤,如果當(dāng)天賣不完,剩下的米粉以2元/斤的價(jià)格賣給養(yǎng)豬場(chǎng).根據(jù)以往統(tǒng)計(jì)資料,得到食堂某天米粉需求量的頻率分布直方圖如圖所示,若食堂購進(jìn)了80斤米粉,以(斤)(其中)表示米粉的需求量, (元)表示利潤.
(1)計(jì)算當(dāng)天米粉需求量的平均數(shù),并直接寫出需求量的眾數(shù)和中位數(shù);
(2)估計(jì)該天食堂利潤不少于760元的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)當(dāng)時(shí),求的最小值;
(Ⅱ)若函數(shù)在區(qū)間(0,1)上為單調(diào)函數(shù),求實(shí)數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系xOy中,橢圓C:+=1 (a>b>0)的離心率是,拋物線E:x2=2y的焦點(diǎn)F是C的一個(gè)頂點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)P是E上的動(dòng)點(diǎn),且位于第一象限,E在點(diǎn)P處的切線l與C交于不同的兩點(diǎn)A,B,線段AB的中點(diǎn)為D.直線OD與過P且垂直于x軸的直線交于點(diǎn)M.
①求證:點(diǎn)M在定直線上;
②直線l與y軸交于點(diǎn)G,記△PFG的面積為S1,△PDM的面積為S2,求的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=xlnx和g(x)=m(x2-1)(m∈R).
(1)m=1時(shí),求方程f(x)=g(x)的實(shí)根;
(2)若對(duì)任意的x∈(1,+∞),函數(shù)y=g(x)的圖象總在函數(shù)y=f(x)圖象的上方,求m的取值范圍;
(3)求證: ++…+>ln(2n+1) (n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知四邊形 的四個(gè)頂點(diǎn)在橢圓: 上,對(duì)角線所在直線的斜率為,且, .
(1)當(dāng)點(diǎn)為橢圓的上頂點(diǎn)時(shí),求所在直線方程;
(2)求四邊形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2017年5月14日,第一屆“一帶一路”國際高峰論壇在北京舉行,為了解不同年齡的人對(duì)“一帶一路”關(guān)注程度,某機(jī)構(gòu)隨機(jī)抽取了年齡在15-75歲之間的100人進(jìn)行調(diào)查, 經(jīng)統(tǒng)計(jì)“青少年”與“中老年”的人數(shù)之比為9:11
關(guān)注 | 不關(guān)注 | 合計(jì) | |
青少年 | 15 | ||
中老年 | |||
合計(jì) | 50 | 50 | 100 |
(1)根據(jù)已知條件完成上面的列聯(lián)表,并判斷能否有的把握認(rèn)為關(guān)注“一帶一路”是否和年齡段有關(guān)?
(2)現(xiàn)從抽取的青少年中采用分層抽樣的辦法選取9人進(jìn)行問卷調(diào)查.在這9人中再選取3人進(jìn)行面對(duì)面詢問,記選取的3人中關(guān)注“一帶一路”的人數(shù)為X,求X的分布列及數(shù)學(xué)期望.
附:參考公式,其中
臨界值表:
0.05 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】世界那么大,我想去看看,處在具有時(shí)尚文化代表的大學(xué)生們旅游動(dòng)機(jī)強(qiáng)烈,旅游可支配收入日益增多,可見大學(xué)生旅游是一個(gè)巨大的市場(chǎng).為了解大學(xué)生每年旅游消費(fèi)支出(單位:百元)的情況,相關(guān)部門隨機(jī)抽取了某大學(xué)的名學(xué)生進(jìn)行問卷調(diào)查,并把所得數(shù)據(jù)列成如下所示的頻數(shù)分布表:
組別 | |||||
頻數(shù) |
(Ⅰ)求所得樣本的中位數(shù)(精確到百元);
(Ⅱ)根據(jù)樣本數(shù)據(jù),可近似地認(rèn)為學(xué)生的旅游費(fèi)用支出服從正態(tài)分布,若該所大學(xué)共有學(xué)生人,試估計(jì)有多少位同學(xué)旅游費(fèi)用支出在元以上;
(Ⅲ)已知樣本數(shù)據(jù)中旅游費(fèi)用支出在范圍內(nèi)的名學(xué)生中有名女生, 名男生,現(xiàn)想選其中名學(xué)生回訪,記選出的男生人數(shù)為,求的分布列與數(shù)學(xué)期望.
附:若,則,
, .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com