(本小題滿分14分)
如圖5所示,四棱錐的底面是半徑為的圓的內(nèi)接四邊形,其中是圓的直徑,,
(1)求線段的長(zhǎng);
(2)若,求三棱錐的體積.
;⑵的體積為
本題考查立體幾何的距離、體積的計(jì)算問題,同時(shí)考查空間想象能力、推理能力和分析解決問題的能力.
(1)是圓的直徑
,又,
,;
(2)在中,

,又
底面

三棱錐的體積為
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)已知直三棱柱ABC-A1B1C1的側(cè)棱長(zhǎng)與
底面三角形的各邊長(zhǎng)都等于a,點(diǎn)D為BC的中點(diǎn).
求證:(1)平面AC1D⊥平面BCC1B1;
(2)A1B∥平面AC1D.(3)求二面角C1-DA-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)如圖,為等腰直角的直角頂點(diǎn),、都垂直于所在的平面,

(1)求二面角的大小;
(2)求點(diǎn)到平面的距離;
(3)問線段上是否存在一點(diǎn),使得平面若存在,請(qǐng)指出點(diǎn)的位置;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖,四棱錐P—ABCD中,PAABCD,四邊形ABCD 是矩形. EF分別是AB、PD的中點(diǎn).若PA=AD=3,CD=.  (1)求證:AF//平面PCE;

(2)求點(diǎn)A到平面PCE的距離;(3)求直線FC與平面PCE所成角的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

紙質(zhì)的正方體的六個(gè)面根據(jù)其方位分別標(biāo)記為上、下、東、南、西、北.現(xiàn)在沿該正方體的一些棱將正方體剪開、外面朝上展平,得到右側(cè)的平面圖形,則標(biāo)“△”的面的方位是

A.南B.北C.西D.下
   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

正方體ABCD-A1B1C1D1的棱長(zhǎng)為1,E在棱CC1上,C1E=3CE,設(shè)平面A1DE與正方體的側(cè)面BB1C1C交于線段EF,則線段EF的長(zhǎng)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

(文科)若正四棱錐的各條棱長(zhǎng)都相等,則到它的五個(gè)頂點(diǎn)距離相等的平面有( 。
A.0個(gè)B.1個(gè)C.2個(gè)D.5個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若圓錐的側(cè)面積為4π,底面積為2π,則該圓錐的母線長(zhǎng)為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

是兩個(gè)不同的平面,m、n是平面之外的兩條不同直線,給出四個(gè)論斷:(1),(2),(3),(4)。以其中三個(gè)論斷作為條件,余下一個(gè)論斷為結(jié)論,寫出你認(rèn)為正確的一個(gè)命題___ _;

查看答案和解析>>

同步練習(xí)冊(cè)答案