【題目】已知橢圓C1:(a>b>0)的離心率為,x軸被曲線C2:y=x2-b截得的線段長度等于C1的短軸長.已知C2y軸的交點為M,過坐標原點O的直線lC2相交于點A,B,直線MA,MB分別與C1相交于點D,E.

(1)C1,C2的方程;

(2)求證:MA⊥MB;

(3)△MAB,△MDE的面積分別為S1,S2,,λ的取值范圍.

【答案】(1),;(2)見解析;(3)

【解析】

(1)根據(jù):的離心率為,軸被曲線截得的線段長度等于的短軸長,結合性質 ,列出關于 、的方程組,求出 、 、,即可得結果;(2),直線與拋物線聯(lián)立,利用平面向量的數(shù)量積公式結合韋達定理可得,從而可得結果;(3)

分別與拋物線方程聯(lián)立求出坐標,分別與橢圓方程聯(lián)立求出,結合三角形面積公式可將表示,利用基本不等式可得結果.

(1)由題意知,=,所以a2=2b2.又2=2b,得b=1,

所以曲線C2的方程為y=x2-1,橢圓C1的方程為+y=1.

(2)證明:設直線AB:y=kx,A(x1,y1),B(x2,y2).

由題意知,M(0,-1),由得x2-kx-1=0,

所以·=(x1,y1+1)·(x2,y2+1)=(k2+1)x1x2+k(x1+x2)+1=-(1+k2)+k2+1=0,所以MA⊥MB.

(3)設直線MA:y=k1x-1,直線MB:y=k2x-1,

則k1k2=-1,且M(0,-1).

解得所以A(k1,-1).同理可得B(k2,-1),

故S1=|MA|·|MB|=··|k1|·|k2|.由解得所以D.同理可得,E,

故S2=|MD|·|ME|=··.

=λ==,

當且僅當k1=±1時等號成立,

故λ的取值范圍是.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)x33xyf(x)上一點P(1,-2),過點P作直線l.

(1)求使直線lyf(x)相切且以P為切點的直線方程;

(2)求使直線lyf(x)相切且切點異于P的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設存在復數(shù)z同時滿足下列兩個條件:

①復數(shù)z在復平面內(nèi)的對應點位于第二象限;

②z·+2iz=8+ai(a∈R).

求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+ax(a∈R),g(x)= (f′(x)為f(x)的導函數(shù)),若方程g(f(x))=0有四個不等的實根,則a的取值范圍是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知橢圓 =1(a>b>0)的離心率為 ,長軸長為4,過橢圓的左頂點A作直線l,分別交橢圓和圓x2+y2=a2于相異兩點P,Q.

(1)若直線l的斜率為 ,求 的值;
(2)若 ,求實數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,已知拋物線y2=2px(p>0)上一點P( ,m)到準線的距離與到原點O的距離相等,拋物線的焦點為F.
(1)求拋物線的方程;
(2)若A為拋物線上一點(異于原點O),點A處的切線交x軸于點B,過A作準線的垂線,垂足為點E.試判斷四邊形AEBF的形狀,并證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了分析某個高三學生的學習狀態(tài),對其下一個階段的學習提出指導性建議,某老師現(xiàn)對他前7次考試的數(shù)學成績x、物理成績y進行分析.下面是該學生7次考試的成績.

(1)他的數(shù)學成績與物理成績哪個更穩(wěn)定?請給出你的證明.

(2)已知該學生的物理成績y與數(shù)學成績x是線性相關的,若該學生的物理成績達到115分,請你估計他的數(shù)學成績大約是多少?并請你根據(jù)物理成績與數(shù)學成績的相關性,給出該學生在學習數(shù)學、物理上的合理建議.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在長方形ABCD中,對角線AC與兩鄰邊所成的角分別為α,β,則cos2α+cos2β=1,則在立體幾何中,給出類比猜想并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐P﹣ABC中,D為AB的中點.

(1)與BC平行的平面PDE交AC于點E,判斷點E在AC上的位置并說明理由如下:
(2)若PA=PB,且△PCD為銳角三角形,又平面PCD⊥平面ABC,求證:AB⊥PC.

查看答案和解析>>

同步練習冊答案