已知A、B、C為的三個(gè)內(nèi)角且向量與共線.
(Ⅰ)求角C的大;
(Ⅱ)設(shè)角的對(duì)邊分別是,且滿足,試判斷的形狀.
(Ⅰ) ;(Ⅱ)等邊三角形.
解析試題分析:(Ⅰ)利用共線向量的坐標(biāo)運(yùn)算,二倍角公式,輔助角公式變形求得;(Ⅱ)根據(jù)余弦定理及已知條件求出邊、的關(guān)系,再結(jié)合判斷出結(jié)論.
試題解析:(Ⅰ)∵與共線,
∴
3分
得 ,
∴. 6分
(Ⅱ)方法1:由已知 (1)
根據(jù)余弦定理可得: (2) 8分
(1)、(2)聯(lián)立解得:,
又. ,所以△為等邊三角形, 12分
方法2:
由正弦定理得:
,
∴, 10分
∴, ∴在△中 ∠
又. , 所以 △為等邊三角形, 12分
方法3:由(Ⅰ)知,又由題設(shè)得:,
在中根據(jù)射影定理得:, 10分
,
又, 所以 △為等邊三角形, 12分
考點(diǎn):共線向量的坐標(biāo)運(yùn)算,二倍角公式,余弦定理,正弦定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知△ABC的內(nèi)角A、B、C所對(duì)的邊分別為,且, cosB=.
(1) 若b=4,求sinA的值;
(2) 若△ABC的面積S△ABC=4,求b,c的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在中,角、、所對(duì)的邊分別為,.
(1)求角的大;
(2)若,求函數(shù)的最小正周期和單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=cos(2x-)+sin2x-cos2x.
(Ⅰ)求函數(shù)f(x)的最小正周期及其圖象的對(duì)稱軸方程;
(Ⅱ)設(shè)函數(shù)g(x)=[f(x)]2+f(x),求g(x)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某貨輪在A處看燈塔B在貨輪的北偏東的方向上,距離為海里,在A處看燈塔C在貨輪的北偏西的方向上,距離為海里,貨輪由A處向正北航行到D處時(shí),再看燈塔B在南偏東方向上,求:
(1)AD的距離;
(2)CD的距離。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com