截直線所得弦長是(   )
A.2B.1C.D.
A

試題分析:根據(jù)題意,由于圓的圓心為原點,半徑為2,那么圓心到直線直線的距離為d=,那么可知半弦長為,故可知弦長為2,故答案為A。
點評:主要是考查了直線與圓的位置關(guān)系的運用,屬于基礎(chǔ)題。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知均在⊙O上,且為⊙O的直徑。
(Ⅰ)求的值;
(Ⅱ)若⊙O的半徑為,交于點,且、
為弧的三等分點,求的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,圓的直徑,為圓周上一點,,過作圓的切線,過的垂線,垂足為,則               .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

直線截圓x2+y2=4得的劣弧所對的圓心角是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

方程x2+y2+2ax-by+c=0表示圓心為C(2,2),半徑為2的圓,則a、b、c的值依次為(   )
A.2、4、4B.-2、4、4C.2、-4、4D.2、-4、-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若圓經(jīng)過坐標(biāo)原點和點,且與直線相切, 從圓外一點向該圓引切線,為切點,
(Ⅰ)求圓的方程;
(Ⅱ)已知點,且, 試判斷點是否總在某一定直線上,若是,求出的方程;若不是,請說明理由;
(Ⅲ)若(Ⅱ)中直線軸的交點為,點是直線上兩動點,且以為直徑的圓過點,圓是否過定點?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,是⊙的直徑,延長線上的一點,過作⊙的切線,切點為,若,則⊙的直徑         

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若直線3x-4y+12=0與兩坐標(biāo)軸的交點為A,B,則以線段AB為直徑的圓的方程為____________________。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點P與兩個定點O(0,0),A(-3,0)距離之比為.
(1)求點P的軌跡C方程;
(2)求過點M(2,3)且被軌跡C截得的線段長為2的直線方程.

查看答案和解析>>

同步練習(xí)冊答案