(x-
1
x
)6
的展開式中的常數(shù)項是a,則a=
 
考點:二項式系數(shù)的性質(zhì)
專題:二項式定理
分析:先求出二項式展開式的通項公式,再令x的冪指數(shù)等于0,求得r的值,即可求得展開式中的常數(shù)項的值.再根據(jù)常數(shù)項是a,求得a的值.
解答: 解:由于(x-
1
x
)6
的展開式中的通項公式為Tr+1=
C
r
6
•(-1)rx6-
3r
2
,令6-
3r
2
=0,求得r=4,
可得展開式的常數(shù)項是
C
4
6
=a=15,
故答案為:15.
點評:本題主要考查二項式定理的應(yīng)用,二項式系數(shù)的性質(zhì),二項式展開式的通項公式,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知函數(shù)f(x)=2sin(2x+
π
6
),當x∈[
π
12
,
π
2
]時,求f(x)的值域;
(2)判斷函數(shù)f(x)=1+|tanx|的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在R上的奇函數(shù).
(1)請把f(x)解析式填寫完整f(x)=
x(2-x)(x≥0)
()(x<0)

(1)畫出函數(shù)f(x)的簡圖;
(3)若g(x)=a,F(xiàn)(x)=f(x)-g(x),當a在
 
范圍F(x)有且只有一個零點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2sin
x
4
cos
x
4
-2
3
sin2
x
4
+
3
,且g(x)=f(x+
π
3
)

(1)判斷g(x)的奇偶性
(2)求g(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)x∈[0,4],則x2≤4的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項和Sn=n3,則a4=( 。
A、37B、27C、64D、91

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=2sinx+
2
cos(x+
π
4
)的最大值為( 。
A、
6
B、
2
C、2+
2
D、
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U=Z,A={偶數(shù)},則∁UA=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=2x+a•2-x在R上單調(diào)遞增,則實數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案