【題目】已知函數(shù)f(x)=sin(x+ )+cosx,x∈R,
(1)求函數(shù)f(x)的最大值,并寫出當(dāng)f(x)取得最大值時(shí)x的取值集合;
(2)若α∈(0, ),f(α+ )= ,求f(2α)的值.

【答案】
(1)解:f(x)=sin(x+ )+cosx= sinx+ cosx+cosx= sinx+ cosx

= sin(x+ ),

當(dāng)x+ =2kπ+ ,

即x=2kπ+ ,k∈Z時(shí),函數(shù)f(x)取得最大值

此時(shí)x的取值集合是{x|x=2kπ+ ,k∈Z}


(2)解:由(1)知f(x)= sin(x+ ),

∵f(α+ )= ,

∴f(α+ )=)= sin( +α+ )= cosα= ,

∴cosα=

∵α∈(0, ),

∴sinα= ,

sin2α=2sinαcosα=2× = ,

cos2α=2cos2α﹣1=﹣ ,

∴f(2α)= = sin2α+ cos2α= =


【解析】(1)利用兩角和差的正弦公式以及輔助角公式將函數(shù)f(x)進(jìn)行化簡,結(jié)合三角函數(shù)的圖象和性質(zhì)即可求函數(shù)f(x)的最大值,并寫出當(dāng)f(x)取得最大值時(shí)x的取值集合;(2)根據(jù)條件求出sinα和cosα的值,利用二倍角公式進(jìn)行化簡求值.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解兩角和與差的正弦公式的相關(guān)知識,掌握兩角和與差的正弦公式:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐P﹣ABCD,PD⊥底面ABCD,且底面ABCD是邊長為2的正方形,M、N分別為PB、PC的中點(diǎn).

(1)證明:MN∥平面PAD;
(2)若PA與平面ABCD所成的角為45°,求四棱錐P﹣ABCD的體積V.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量 =(sinx,1), = ,函數(shù)f(x)= 的最大值為6.
(1)求A;
(2)將函數(shù)f(x)的圖象向左平移 個(gè)單位,再將所得圖象上各點(diǎn)的橫坐標(biāo)縮短為原來的 倍,縱坐標(biāo)不變,得到函數(shù)y=g(x)的圖象.求g(x)在[0, ]上的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個(gè)面都為直角三角形的四面體稱之為鱉臑,如圖,網(wǎng)格紙上正方形小格的邊長為,圖中粗線畫出的是某幾何體毛坯的三視圖,第一次切削,將該毛坯得到一個(gè)表面積最大的長方體,第二次切削沿長方體的對角面刨開,得到兩個(gè)三棱柱,第三次切削將兩個(gè)三棱柱分別沿棱和表面的對角線刨開得到兩個(gè)鱉臑和兩個(gè)陽馬,則陽馬與鱉臑的體積之比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄A與圓 相切,且與圓 相內(nèi)切,記圓心的軌跡為曲線.設(shè)為曲線上的一個(gè)不在軸上的動點(diǎn), 為坐標(biāo)原點(diǎn),過點(diǎn)的平行線交曲線, 兩個(gè)不同的點(diǎn).

(Ⅰ)求曲線的方程;

(Ⅱ)試探究的比值能否為一個(gè)常數(shù)?若能,求出這個(gè)常數(shù),若不能,請說明理由;

(Ⅲ)記的面積為, 的面積為,令,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲船從A處以每小時(shí)30海里的速度沿正北方向航行,乙船在B處沿固定方向勻速航行,B在A北偏西105°方向用與B相距10 海里處.當(dāng)甲船航行20分鐘到達(dá)C處時(shí),乙船航行到甲船的北偏西120°方向的D處,此時(shí)兩船相距10海里.

(1)求乙船每小時(shí)航行多少海里?
(2)在C的北偏西30°方向且與C相距 海里處有一個(gè)暗礁E,周圍 海里范圍內(nèi)為航行危險(xiǎn)區(qū)域.問:甲、乙兩船按原航向和速度航行有無危險(xiǎn)?若有危險(xiǎn),則從有危險(xiǎn)開始,經(jīng)過多少小時(shí)后能脫離危險(xiǎn)?若無危險(xiǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題共12分)

如圖,在直三棱柱中,,點(diǎn)的中點(diǎn),

(1)求證:平面;

(2)求證:平面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中常數(shù)

(Ⅰ)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;

(Ⅱ)設(shè)定義在上的函數(shù)在點(diǎn)處的切線方程為, 若內(nèi)恒成立,則稱為函數(shù)的“類對稱點(diǎn)”,當(dāng)時(shí),試問是否存在“類對稱點(diǎn)”,若存在,請求出一個(gè)“類對稱點(diǎn)”的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)的定義域是,對于以下四個(gè)命題:

(1)是奇函數(shù),則也是奇函數(shù);

(2)是周期函數(shù),則也是周期函數(shù);

(3)是單調(diào)遞減函數(shù),則也是單調(diào)遞減函數(shù);

(4) 若函數(shù)存在反函數(shù),且函數(shù)有零點(diǎn),則函數(shù)也有零點(diǎn).

其中正確的命題共有

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

同步練習(xí)冊答案