線段AB的兩個(gè)端點(diǎn)A,B到平面α的距離分別為6cm,9cm,P在線段AB上,AP:PB=1;2,則P到平面α的距離為_(kāi)_____.
分A,B在平面α的同側(cè)與異側(cè)兩種情況討論.
當(dāng)A,B在平面α的同側(cè)時(shí),P到平面α的距離d=|
2
3
×6+
1
3
×9|
=7cm,
當(dāng)A,B在平面α的異側(cè)時(shí),P到平面α的距離d=|
2
3
×6-
1
3
×9|
=1cm.
故P到平面α的距離為:7cm或1cm
故答案為:7cm或1cm
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在長(zhǎng)方體中,指出,所在直線與各個(gè)面的關(guān)系.
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,直三棱柱ABB1-DCC1中,∠ABB1=90°,AB=4,BC=2,CC1=1,DC上有一動(dòng)點(diǎn)P,則ΔAPC1周長(zhǎng)的最小值為
A.5+B.5-C.4+D.4-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在120°的二面角α-l-β內(nèi)有一點(diǎn)P,P在平面α、β內(nèi)的射影A、B分別落在半平面αβ內(nèi),且PA=3,PB=4,則P到l的距離為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60,
(1)求點(diǎn)A到平面PBD的距離的值;
(2)求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,用一副直角三角板拼成一直二面角A-BD-C,若其中給定AB=AD=2,∠BCD=90°,∠BDC=60°,
(Ⅰ)求三棱錐A-BCD的體積;
(Ⅱ)求點(diǎn)A到BC的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

三棱錐P-ABC的三條側(cè)棱兩兩垂直,Q為底面上一點(diǎn),Q到三個(gè)側(cè)面的距離分別為3、4、5,則PQ的長(zhǎng)度為( 。
A.5B.5
2
C.4
2
D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知P是邊長(zhǎng)為a的正六邊形ABCDEF所成平面外一點(diǎn),PA⊥AB,PA⊥AF,PA=a.則點(diǎn)P到邊CD的距離是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,P△ABC所在平面外一點(diǎn),PA=PB,CB⊥平面PAB,M是PC中點(diǎn),N是AB上的點(diǎn),AN=3NB,
(1)求證:MN⊥AB;
(2)當(dāng)∠PAB=90°,BC=2,AB=4時(shí),求MN的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案