(1)已知cosα=-
4
5
,  α∈( π, 
2
 )
,求tanα.
(2)若tanα=2,求
sinα+cosα
sinα-cosα
+cos2α
的值.
分析:(1)利用同角的平方關(guān)系和商數(shù)關(guān)系即可得出;
(2)利用平方關(guān)系和“弦化切”即可得出.
解答:解:(1)∵cosα=-
4
5
,  α∈( π, 
2
 )
,∴sinα=-
1-(-
4
5
)2
=-
3
5

∴tanα=
sinα
cosα
=
3
4

(2)∵tanα=2,∴
sinα+cosα
sinα-cosα
+cos2α
=
tanα+1
tanα-1
+
cos2α
sin2α+cos2α
=
tanα+1
tanα-1
+
1
tan2α+1
=
2+1
2-1
+
1
22+1
=
16
5
點(diǎn)評(píng):熟練掌握同角的三角函數(shù)基本關(guān)系式和“弦化切”的方法是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知cos(x+
π
6
)=
1
4
,求cos(
6
-x)+cos2(
π
3
-x)
的值;
(2)計(jì)算:sin
π
6
+cos2
π
4
cosπ+3tan2
π
6
+cos
π
3
-sin
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求值:
(1)已知cos(α-
β
2
)
=-
4
5
,sin(β-
α
2
)=
5
13
,且
π
2
<α<π,0<β<
π
2
,求cos
α+β
2
的值;
(2)已知tanα=4
3
,cos(α+β)=-
11
14
,α、β均為銳角,求cosβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知cosα=
1
3
,求
cos(2π-α)•sin(π+α)
sin(
π
2
+α)•tan(3π-α)
的值;
(2)已知tanα=2,求sin2α+sinαcosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知cosα=
4
5
,cos(α+β)=
5
13
,α,β為銳角,求sinβ.

(2)已知cos(
π
4
+x)=
3
5
,
17
12
π<x<
7
4
π,求
sin2x+2sinxcosxtanx
1-tanx
的值.
(3)設(shè)cos(α-
β
2
)=-
1
9
,sin(
α
2
-β)=
2
3
,(
π
2
<α<π,0<β<
π
2
),求cos(α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)已知cosα=
1
7
,cos(α-β)=
13
14
,且0<β<α<
π
2
,求β的值.
(2)已知A+B=
π
4
,求證:(1+tanA)(1+tanB)=2.

查看答案和解析>>

同步練習(xí)冊(cè)答案