已知a>b,e>f,c>0,求證:f-ac<e-bc.

答案:
解析:

  [證明]∵a>b,c>0,

  ∴ac>bc,又∵e>f,∴e+ac>f+bc,∴e-bc>f-ac.

  ∴f-ac<e-bc.

  [點評]應(yīng)在理解的基礎(chǔ)上,記準(zhǔn)、記熟不等式的九條性質(zhì)并注意在解題時靈活、準(zhǔn)確地加以應(yīng)用.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

10、已知a>b,e>f,c>0,求證:f-ac<e-bc.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a>b>0,F(xiàn)是方程
x2
b2
+
y2
a2
=1
的橢圓E的一個焦點,P、A,B是橢圓E上的點,
PF
與x軸平行,
PF
=
a
4
,設(shè)
A(x1,y1),B(x2,y2),
m
=(
x1
b
,
y1
a
)
,
n
=(
x2
b
,
y2
a
)
m
n
=0

(I )求橢圓E的離心率
(II)如果橢圓E上的點與橢圓E的長軸的兩個端點構(gòu)成的三角形的面積的最大值等于2,直線y=kx-3經(jīng)過A、B兩點,求k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知a>b>0,F(xiàn)是方程
x2
b2
+
y2
a2
=1
的橢圓E的一個焦點,P、A,B是橢圓E上的點,
PF
與x軸平行,
PF
=
a
4
,設(shè)
A(x1,y1),B(x2,y2),
m
=(
x1
b
y1
a
)
,
n
=(
x2
b
,
y2
a
)
,
m
n
=0

(I )求橢圓E的離心率
(II)如果橢圓E上的點與橢圓E的長軸的兩個端點構(gòu)成的三角形的面積的最大值等于2,直線y=kx-3經(jīng)過A、B兩點,求k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年高考數(shù)學(xué)復(fù)習(xí):6.1 不等關(guān)系與不等式課下練兵場(解析版) 題型:解答題

已知a>b,e>f,c>0,求證:f-ac<e-bc.

查看答案和解析>>

同步練習(xí)冊答案