【題目】已知函數(shù) .

(1)當(dāng)時,求函數(shù)在點處的切線方程;

(2)當(dāng)時,令函數(shù),若函數(shù)在區(qū)間上有兩個零點,求實數(shù)的取值范圍.

【答案】(1)切線方程為;(2)實數(shù)的取值范圍是.

【解析】【試題分析】(1)當(dāng)時,求出切點和斜率,利用直線方程點斜式可求得切線方程.(2)先化簡得到.利用導(dǎo)數(shù)求得其最小值為,由此得到在區(qū)間上有兩個零點的條件是,解這個不等式求得的范圍.

【試題解析】

(1)當(dāng)時, .

當(dāng)時, ,所以點,

,因此.

因此所求切線方程為.

(2)當(dāng)時, ,

.

因為,所以當(dāng)時,

且當(dāng)時, ;當(dāng)時,

處取得極大值也即最大值.

, ,

,所以在區(qū)間上的最小值為,

在區(qū)間上有兩個零點的條件是

所以實數(shù)的取值范圍是.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某兒童樂園在六一兒童節(jié)推出了一項趣味活動.參加活動的兒童需轉(zhuǎn)動如圖所示的轉(zhuǎn)盤兩次,每次轉(zhuǎn)動后,待轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄指針?biāo)竻^(qū)域中的數(shù).設(shè)兩次記錄的數(shù)分別為x,y.獎勵規(guī)則如下:

,則獎勵玩具一個;

,則獎勵水杯一個;

其余情況獎勵飲料一瓶.

假設(shè)轉(zhuǎn)盤質(zhì)地均勻,四個區(qū)域劃分均勻.小亮準(zhǔn)備參加此項活動.

)求小亮獲得玩具的概率;

)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線右支上的一點,經(jīng)過點的直線與雙曲線的兩條漸近線分別相交于,兩點.若點分別位于第一,四象限,為坐標(biāo)原點.當(dāng)時,為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某種新產(chǎn)品投放市場的100天中,前40天價格呈直線上升,而后60天其價格呈直線下降,現(xiàn)統(tǒng)計出其中4天的價格如下表:

時間

第4天

第32天

第60天

第90天

價格(千元)

23

30

22

7

(1)寫出價格關(guān)于時間的函數(shù)關(guān)系式;(表示投放市場的第天);

(2)銷售量與時間的函數(shù)關(guān)系:,則該產(chǎn)品投放市場第幾天銷售額最高?最高為多少千元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】求下列函數(shù)的值域

1 2

3 4

5 6

7 8

9 10

11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點為.

(1)若拋物線的焦點到準(zhǔn)線的距離為4,直線,求直線截拋物線所得的弦長;

(2)過點的直線交拋物線兩點,過點作拋物線的切線,兩切線相交于點,若分別表示直線與直線的斜率,且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形, , , , 均為等邊三角形,點的中點.

(1)證明:平面平面;

(2)試問在線段上是否存在點使二面角的余弦值為,若存在,請確定點的位置;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲起來,睡了一覺,當(dāng)它醒來時,發(fā)現(xiàn)烏龜快到終點了,于是急忙追趕,但為時已晚,烏龜還是先到達(dá)了終點.用,分別表示烏龜和兔子所行的路程,為時間,則與故事情節(jié)相吻合的是(  )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商場建成后對外出租,租賃付費按年收取,標(biāo)準(zhǔn)為:每一個商鋪租賃不超過1年收費20萬元,超過1年的部分每年收取15萬元(不足1年按1年計算).現(xiàn)甲、乙兩人從該商場各自租賃一個商鋪,兩人的租賃時間都不超過3年.設(shè)甲、乙租賃時間不超過1年的概率分別為, 租賃時間1年以上且不超過2年的概率分別為, .甲乙租賃相互獨立.

1求甲租賃付費為50萬元的概率;

2求甲、乙兩人租賃付費相同的概率;

3)設(shè)甲、乙兩人租賃付費之和為隨機(jī)變量,的分布列與數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案