精英家教網 > 高中數學 > 題目詳情
(2013•長寧區(qū)一模)我們知道,在平面中,如果一個凸多邊形有內切圓,那么凸多邊形的面積S、周長c與內切圓半徑r之間的關系為S=
1
2
cr
.類比這個結論,在空間中,果已知一個凸多面體有內切球,且內切球半徑為R,那么凸多面體的體積V、表面積S'與內切球半徑R之間的關系是
V=
1
3
S′R
V=
1
3
S′R
分析:由平面圖形中點的性質類比推理出空間里的線的性質,由平面圖形中線的性質類比推理出空間中面的性質,由平面圖形中面的性質類比推理出空間中體的性質.
解答:解:在平面中,如果一個凸多邊形有內切圓,那么凸多邊形的面積S、周長c與內切圓半徑r之間的關系為S=
1
2
cr

類比這個結論,可得
個凸多面體有內切球,且內切球半徑為R,那么凸多面體的體積V、表面積S'與內切球半徑R之間的關系是V=
1
3
S′R
,
故答案為 V=
1
3
S′R
點評:本題主要考查的知識點是類比推理,類比推理的一般步驟是:(1)找出兩類事物之間的相似性或一致性;(2)用一類事物的性質去推測另一類事物的性質,得出一個明確的命題(猜想),屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(2013•長寧區(qū)一模)某工廠生產一種產品的原材料費為每件40元,若用x表示該廠生產這種產品的總件數,則電力與機器保養(yǎng)等費用為每件0.05x元,又該廠職工工資固定支出12500元.
(1)把每件產品的成本費P(x)(元)表示成產品件數x的函數,并求每件產品的最低成本費;
(2)如果該廠生產的這種產品的數量x不超過3000件,且產品能全部銷售,根據市場調查:每件產品的銷售價Q(x)與產品件數x有如下關系:Q(x)=170-0.05x,試問生產多少件產品,總利潤最高?(總利潤=總銷售額-總的成本)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•長寧區(qū)一模)設f(x)為定義在R上的奇函數,當x≥0時,f(x)=2x+2x+b(b為常數),則f(-2)=
-1
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•長寧區(qū)一模)(2-
x
8 展開式中含x4項的系數為
1
1

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•長寧區(qū)一模)已知函數f(x)=
1+x
+
1-x

(1)求函數f(x)的定義域和值域;
(2)設F(x)=
a
x
•[f2(x)-2]+f(x)(a為實數),求F(x)在a<0時的最大值g(a);
(3)對(2)中g(a),若-m2+2tm+
2
≤g(a)對a<0所有的實數a及t∈[-1,1]恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•長寧區(qū)一模)“φ=
π
2
”是“函數y=sin(x+φ)為偶函數的”(  )

查看答案和解析>>

同步練習冊答案