【題目】已知函數(shù)f(x)= sin2x+cos2x﹣m在[0, ]上有兩個(gè)零點(diǎn),則實(shí)數(shù)m的取值范圍是(
A.(﹣1,2)
B.[1,2)
C.(﹣1,2]
D.[1,2]

【答案】B
【解析】解:由題意可得函數(shù)g(x)=2sin(2x+ ) 與直線y=m在[0, ]上兩個(gè)交點(diǎn). 由于x∈[0, ],故2x+ ∈[ , ],故g(x)∈[﹣1,2].
令2x+ =t,則t∈[ ],函數(shù)y=h(t)=2sint 與直線y=m在[ , ]上有兩個(gè)交點(diǎn),
如圖:
要使的兩個(gè)函數(shù)圖形有兩個(gè)交點(diǎn)必須使得1≤m<2,
故選B.

【考點(diǎn)精析】本題主要考查了兩角和與差的正弦公式和函數(shù)的零點(diǎn)的相關(guān)知識(shí)點(diǎn),需要掌握兩角和與差的正弦公式:;函數(shù)的零點(diǎn)就是方程的實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo).即:方程有實(shí)數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點(diǎn),函數(shù)有零點(diǎn)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f(x)=logax,g(x)=loga(2x+t﹣2)2 , (a>0,a≠1,t∈R).
(1)當(dāng)t=4,x∈[1,2]時(shí)F(x)=g(x)﹣f(x)有最小值為2,求a的值;
(2)當(dāng)0<a<1,x∈[1,2]時(shí),有f(x)≥g(x)恒成立,求實(shí)數(shù)t的取值范圍.
(備注:函數(shù)y=x+ 在區(qū)間(0,1)上單調(diào)遞減,在區(qū)間(1,+∞)上單調(diào)遞增).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知關(guān)于x的不等式ax2+2x+b>0(a≠0)的解集為 ,且a>b,則 的最小值是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在區(qū)間上任取兩個(gè)實(shí)數(shù),則函數(shù)在區(qū)間上有且只有一個(gè)零點(diǎn)的概率是

A B C D

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某三棱錐的三視圖如圖所示,則該三棱錐的表面積是(
A.2+
B.4+
C.2+2
D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個(gè)年度未發(fā)生責(zé)任道路交通事故

下浮20%

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)購(gòu)為了研究某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了60輛車(chē)齡已滿(mǎn)三年的該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類(lèi)型

數(shù)量

10

5

5

20

15

5

(1)求一輛普通6座以下私家車(chē)在第四年續(xù)保時(shí)保費(fèi)高于基本保費(fèi)的頻率;

(2)某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē),假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損5000元,一輛非事用戶(hù)車(chē)盈利10000元,且各種投保類(lèi)型車(chē)的頻率與上述機(jī)構(gòu)調(diào)查的頻率一致,完成下列問(wèn)題:

①若該銷(xiāo)售商店內(nèi)有六輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),某顧客欲在店內(nèi)隨機(jī)挑選兩輛車(chē),求這兩輛車(chē)恰好有一輛為事故車(chē)的概率;

②若該銷(xiāo)售商一次購(gòu)進(jìn)120輛(車(chē)齡已滿(mǎn)三年)該品牌二手車(chē),求一輛車(chē)盈利的平均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知直二面角α﹣AB﹣β,P∈α,Q∈β,PQ與平面α,β所成的角都為30°,PQ=4,PC⊥AB,C為垂足,QD⊥AB,D為垂足,求:
(1)直線PQ與CD所成角的大小
(2)四面體PCDQ的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為常數(shù))

(1)若,討論的單調(diào)性;

(2)若對(duì)任意的,都存在使得不等式成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù) ,數(shù)列{an}滿(mǎn)足
(1)求證:數(shù)列{ }是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)記Sn=a1a2+a2a3+…+anan+1 , 求Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案