【題目】閱讀如圖程序框圖,如果輸出k=5,那么空白的判斷框中應(yīng)填入的條件是(
A.S>﹣25
B.S<﹣26
C.S<﹣25
D.S<﹣24

【答案】D
【解析】解:第一次執(zhí)行循環(huán)體后,S=1,k=1,不滿足輸出的條件,k=2; 第二 次執(zhí)行循環(huán)體后,S=0,k=2,不滿足輸出的條件,k=3;
第三次執(zhí)行循環(huán)體后,S=﹣3,k=3,不滿足輸出的條件,k=4;
第四次執(zhí)行循環(huán)體后,S=﹣10,k=4,不滿足輸出的條件,k=5;
第五次執(zhí)行循環(huán)體后,S=﹣25,k=5,滿足輸出的條件,
比較四個答案,可得條件為S<﹣24滿足題意,
故選:D
【考點精析】通過靈活運用程序框圖,掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓C: =1(a>b>0),橢圓C短軸的一個端點與長軸的一個端點的連線與圓O:x2+y2= 相切,且拋物線y2=﹣4 x的準(zhǔn)線恰好過橢圓C的一個焦點. (Ⅰ)求橢圓C的方程;
(Ⅱ)過圓O上任意一點P作圓的切線l與橢圓C交于A,B兩點,連接PO并延長交圓O于點Q,求△ABQ面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中 中,曲線 的參數(shù)方程為 為參數(shù)),以原點 為極點, 軸的正半軸為極軸建立極坐標(biāo)系.
(1)寫出曲線 的普通方程和極坐標(biāo)方程;
(2)若直線 與曲線 相交于點 兩點,且 ,求證: 為定值,并求出這個定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線l的參數(shù)方程為 (t為參數(shù)),在極坐標(biāo)系(與直角坐標(biāo)系xoy取相同的單位長度,且以原點為極點,x軸的正半軸為極軸)中,圓C的極坐標(biāo)方程為ρ=4cosθ.
(1)若直l線與圓C相切,求實數(shù)a的值;
(2)若點M的直角坐標(biāo)為(1,1),求過點M且與直線l垂直的直線m的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等比數(shù)列{an}的公比為q(q≠1),等差數(shù)列{bn}的公差也為q,且a1+2a2=3a3 . (Ι)求q的值;
(II)若數(shù)列{bn}的首項為2,其前n項和為Tn , 當(dāng)n≥2時,試比較bn與Tn的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a,b,c,a2+b2+c2=ac+bc+ca.
(1)證明:△ABC是正三角形;
(2)如圖,點D的邊BC的延長線上,且BC=2CD,AD= ,求sin∠BAD的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) ,把函數(shù)f(x)的圖象向右平移 個單位得函數(shù)g(x)的圖象,則下面結(jié)論正確的是(
A.函數(shù)g(x)是奇函數(shù)
B.函數(shù)g(x)在區(qū)間[π,2π]上是增函數(shù)
C.函數(shù)g(x)的最小正周期是4π
D.函數(shù)g(x)的圖象關(guān)于直線x=π對稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】微信是騰訊公司推出的一種手機通訊軟件,它支持發(fā)送語音短信、視頻、圖片和文字,一經(jīng)推出便風(fēng)靡全國,甚至涌現(xiàn)出一批在微信的朋友圈內(nèi)銷售商品的人(被稱為微商).為了調(diào)查每天微信用戶使用微信的時間,某經(jīng)銷化妝品的微商在一廣場隨機采訪男性、女性用戶各50 名,其中每天玩微信超過6 小時的用戶列為“微信控”,否則稱其為“非微信控”,調(diào)查結(jié)果如下:

微信控

非微信控

合計

男性

26

24

50

女性

30

20

50

合計

56

44

100


(1)根據(jù)以上數(shù)據(jù),能否有60%的把握認(rèn)為“微信控”與”性別“有關(guān)?
(2)現(xiàn)從調(diào)查的女性用戶中按分層抽樣的方法選出5 人并從選出的5 人中再隨機抽取3 人贈送200 元的護膚品套裝,記這3 人中“微信控”的人數(shù)為X,試求X 的分布列與數(shù)學(xué)期望. 參考公式: ,其中n=a+b+c+d.

P(K2≥k0

0.50

0.40

0.25

0.05

0.025

0.010

k0

0.455

0.708

1.323

3.841

5.024

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=x2+ex (x<0)與g(x)=x2+ln(x+a)圖象上存在關(guān)于y軸對稱的點,則a的取值范圍是(
A.(﹣
B.(
C.(
D.(

查看答案和解析>>

同步練習(xí)冊答案