【題目】已知函數(shù)f(x)=(sinx+cosx)2-2cos2x,

(1)求函數(shù)f(x)的最小正周期和單調(diào)遞減區(qū)間;

(2)當(dāng)x∈時,求f(x)的最大值和最小值

【答案】(1) 單調(diào)遞減區(qū)間[π+Kπ,7π/8+Kπ] kZ ;(2) f(x)的最大值是,f(x)的最小值是-1..

【解析】試題分析:(1)先根據(jù)二倍角公式與配角公式將函數(shù)化為基本三角函數(shù),再根據(jù)正弦函數(shù)性質(zhì)求最小正周期和單調(diào)遞減區(qū)間;(2)先根據(jù)x∈,確定正弦函數(shù)自變量取值范圍,再根據(jù)正弦函數(shù)性質(zhì)求最值

試題解析:由題設(shè)得:f(x)=(sinx+cosx)-2cosx

=1+2sinxcosx-2cosx

=1+sin2x-(1+cos2x)

=sin2x-cos2x=sin(2x-)

(1)最小正周期T=π,

+2Kπ≤2x-+2Kπ k∈Z

π+2Kπ≤2x≤π+2Kπ

π+Kπ≤x≤7π/8+Kπ

單調(diào)遞減區(qū)間[π+Kπ,7π/8+Kπ] k∈Z,

(2)0≤x≤,0≤2x≤π,- ≤2x -≤π- =π

當(dāng)2x - = xπ時,f(x)有最大值

此時f(x)在[0,π]是增函數(shù),在 [π,]是減函數(shù)

所以f(x)的最大值是,f(x)的最小值是-1.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱柱為長方體,點(diǎn)上的一點(diǎn).

(1)若的中點(diǎn),當(dāng)為何值時,平面平面;

(2)若, ,當(dāng)時,直線與平面所成角的正弦值是否存在最大值?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線 的焦點(diǎn)為,過的直線交拋物線于點(diǎn),當(dāng)直線的傾斜角是時, 的中垂線交軸于點(diǎn).

(1)求的值;

(2)以為直徑的圓交軸于點(diǎn),記劣弧的長度為,當(dāng)直線點(diǎn)旋轉(zhuǎn)時,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程分別是為參數(shù))和為參數(shù)),以為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求圓的極坐標(biāo)方程;

(Ⅱ)射線 與圓交于點(diǎn)、,與圓交于點(diǎn),求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以為極點(diǎn), 軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為, 是曲線與直線 )的交點(diǎn)(異于原點(diǎn)).

(1)寫出, 的直角坐標(biāo)方程;

(2)求過點(diǎn)和直線垂直的直線的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中=2.71828…為自然數(shù)的底數(shù).

(1)當(dāng)時,討論函數(shù)的單調(diào)性;

(2)當(dāng)時,求證:對任意的, .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知向量a=(2x-y+1,x+y-2),b=(2,-2).

①當(dāng)x、y為何值時,a與b共線?

②是否存在實(shí)數(shù)x、y,使得a⊥b,且|a|=|b|?若存在,求出xy的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)若,函數(shù)的圖像與函數(shù)的圖像相切,求的值;

(2)若 ,函數(shù)滿足對任意,都有恒成立,求的取值范圍;

(3)若,函數(shù),且有兩個極值點(diǎn),其中,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)橢圓的左、右焦點(diǎn)分別為右頂點(diǎn)為,上頂點(diǎn)為.已知

1求橢圓的離心率;

2設(shè)為橢圓上異于其頂點(diǎn)的一點(diǎn),以線段為直徑的圓經(jīng)過點(diǎn)經(jīng)過點(diǎn)的直線與該圓相切于點(diǎn)求橢圓的方程.

查看答案和解析>>

同步練習(xí)冊答案