已知向量
a
,
b
滿足|
a
|=3,|
b
|=2
3
,且
a
⊥(
a
+
b
),則
b
a
方向上的投影為( 。
A、3
B、
3
3
2
C、-
3
3
2
D、-3
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:由于
a
⊥(
a
+
b
),可得
a
•(
a
+
b
)=0,解得
a
b
=-
a
2
利用
b
a
方向上的投影=
a
b
|
a
|
=即可得出.
解答: 解:∵
a
⊥(
a
+
b
),
a
•(
a
+
b
)=
a
2
+
a
b
=0,
a
b
=-
a
2
=-9.
b
a
方向上的投影=
a
b
|
a
|
=
-9
3
=-3.
故選:D.
點(diǎn)評(píng):本題考查了向量垂直與數(shù)量積的關(guān)系、向量的投影,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
4
x
與g(x)=x3+t,若f(x)與g(x)的交點(diǎn)在直線y=x的兩側(cè),則實(shí)數(shù)t的取值范圍是( 。
A、(-6,0]
B、(-6,6)
C、(4,+∞)
D、(-4,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
1
2
x2+x-4
(1)當(dāng)x∈[-2,2]時(shí),求f(x)的值域;
(2)若f(x)在區(qū)間[2a,a+1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(3)求f(x)在區(qū)間[-2,t](t>-2)上的最小值g(t).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}的前n項(xiàng)的和為Sn(n∈N*),且an=2n+λ,當(dāng)且僅當(dāng)n≥7時(shí)數(shù)列{Sn}遞增,則實(shí)數(shù)λ的取值范圍是( 。
A、(-16,-14]
B、(-16,-14)
C、[-16,-14)
D、[-16,-14]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

直線3x-4y-9=0與圓x2+y2=4的位置關(guān)系是( 。
A、相交且過圓心B、相切
C、相交但不過圓心D、相離

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P在直線5x+12y-2=0上,從P點(diǎn)引圓x2+(y+2)2=1的切線,記切線長(zhǎng)為a,則f(a)=
a
a2-
3
a+1
的值域?yàn)?div id="lx5pxl5" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用長(zhǎng)度為48的材料圍一個(gè)矩形場(chǎng)地,中間有兩道隔墻,要使矩形的面積最大,則隔墻的長(zhǎng)度為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
a
b
都是非零向量,則“
a
b
=±|
a
|•|
b
|”是“
a
、
b
共線”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則將y=f(x)的圖象向左平移
π
6
個(gè)單位后,得到g(x)的圖象解析式為( 。
A、g(x)=sin2x
B、g(x)=cos2x
C、g(x)=sin(2x+
3
D、g(x)=sin(2x-
π
6

查看答案和解析>>

同步練習(xí)冊(cè)答案