如圖所示,某幾何體的直觀圖、側(cè)視圖與俯視圖如圖所示,正視圖為矩形,F(xiàn)為CE上的點(diǎn),且BF⊥平面ACE.
(1)求證:AE∥平面BFD;
(2)求平面BFD與平面ABE所成的銳二面角的大。
考點(diǎn):與二面角有關(guān)的立體幾何綜合題,直線與平面平行的判定
專題:空間位置關(guān)系與距離,空間角
分析:(1)連接AC,交BD于點(diǎn)G,由線面垂直得CE⊥BF,由已知條件推導(dǎo)出FG∥AE,由此能證明AE∥平面BFD.
(2)建立空間直角坐標(biāo)系,利用向量法能求出平面BFD與平面ABE所成的銳二面角的大。
解答: (1)證明:連接AC,交BD于點(diǎn)G,
∵ABCD為矩形,∴G為AC的中點(diǎn),
∵BF⊥平面ACE,∴CE⊥BF,
由三視圖知BC=BE=2,∴F是EC的中點(diǎn),
連接FG,得FG∥AE,
∵AE不包含于平面BFD,F(xiàn)G?平面BFD,
∴AE∥平面BFD.
(2)解:建立如圖所示的空間直角坐標(biāo)系,
由題意知B(2,0,0),F(xiàn)(1,0,1),D(0,2,2),
FB
=(1,0,-1),
BD
=(-2,2,2)
,
設(shè)平面FBD的法向量
n
=(x,y,z),
n
FB
=x-z=0
n
BD
=-2x+2y+2z=0
,
令x=1,得
n
=(1,0,1)
,
又平面ABE的法向量
m
=(0,0,1),
∴cos<
m
n
>=
1
2
=
2
2
,
∴平面BFD與平面ABE所成的銳二面角為
π
4
點(diǎn)評:本題考查直線與平面平行的證明,考查銳二面角的大小的求法,解題時要認(rèn)真審題,注意向量法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

用邊長為6分米的正方形鐵皮做一個無蓋的水箱,先在四角分別截去一個小正方形,然后把四邊翻轉(zhuǎn)90°,再焊接而成(如圖).設(shè)水箱底面邊長為x分米,則( 。
A、水箱容積最大為8立方分米
B、水箱容積最大為64立方分米
C、當(dāng)x在(0,3)時,水箱容積V(x)隨x增大而增大
D、當(dāng)x在(0,3)時,水箱容積V(x)隨x增大而減小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,AC=BC=1,∠ACB=90°,PA⊥平面ABC,CE∥PA,PA=2CE=2.
(Ⅰ)求三棱錐E-PAB的體積;
(Ⅱ)在棱PB上是否存在一點(diǎn)F,使得EF∥平面ABC?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列函數(shù)的奇偶性
(1)f(x)=x+
1
x

(2)f(x)=x4+x2+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A、B、C為△ABC的三內(nèi)角,且其對邊分別為a、b、c,若
m
=(-cos
A
2
,sin
A
2
),
n
=(cos
A
2
,sin
A
2
),且
m
n
=
1
2

(Ⅰ)求角A;
(Ⅱ)若a=
3
,求2b+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在三棱柱ABC-A1B1C1中,AC⊥BC,AB⊥BB1,AC=BC=BB1=2,D為AB的中點(diǎn),且CD⊥DA1
(Ⅰ)求證:平面A1B1B⊥平面ABC;
(2)求多面體DBC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)l的方程為(m2-2m-3)x+(2m2+m-1)y=2m-6,根據(jù)下列條件分別確定m的值.
①x軸上的截距是-3;
②l的傾斜角為
π
4
;
(Ⅱ)求經(jīng)過直線l1:x+y+1=0,l2:5x-y-1=0的交點(diǎn),并且與直線3x+2y+1=0垂直的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x1,x2是關(guān)于x的一元二次方程4kx2-4kx+k+1=0的兩個實(shí)數(shù)根.
(1)是否存在實(shí)數(shù)k,使(2x1-x2)(x1-2x2)=
1
2
成立?若存在,求出k的值;若不存在,說明理由;
(2)求使
x1
x2
+
x2
x1
-2的值為整數(shù)的實(shí)數(shù)k的整數(shù)值;
(3)若k=-2,λ=
x1
x2
,試求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一次國際大會,從某大學(xué)外語系選出11名翻譯,其中5人只會英語,4人只會日語,2人既會英語也會日語,現(xiàn)從這11名中選出4名當(dāng)英語翻譯,4名當(dāng)日語翻譯,不同的選法有多少種?

查看答案和解析>>

同步練習(xí)冊答案