某種項(xiàng)目的射擊比賽,開始時(shí)在距目標(biāo)100米處射擊,如果命中記3分,且停止射擊,若第一次射擊未命中,可以進(jìn)行第二次射擊,但目標(biāo)已經(jīng)在150米處,這時(shí)命中記2分,且停止射擊;若第二次仍未命中,還可以進(jìn)行第三次射擊,此時(shí)目標(biāo)已在200米處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分,已知射手甲在100m處擊中目標(biāo)的概率為
12
,他的命中率與目標(biāo)的距離的平方成反比,且各次射擊都是獨(dú)立的.
(1)求這名射手在三次射擊中命中目標(biāo)的概率;
(2)求這名射手比賽中得分的均值.
分析:(1)由題意知本題是一個(gè)相互獨(dú)立事件同時(shí)發(fā)生的概率,記出事件,射手在三次射擊中命中目標(biāo)包括射擊一次命中目標(biāo),射擊兩次第二次命中目標(biāo),射擊三次只有第三次命中目標(biāo),根據(jù)事件寫出概率.
(2)要求射手比賽中得分的均值,先要求得分的分布列,由題意知射手甲得分為ξ,它的取值是0、1、2、3,看出變量取值不同時(shí)對應(yīng)的事件,根據(jù)相互獨(dú)立事件同時(shí)發(fā)生的概率公式得到結(jié)果.
解答:解:記第一、二、三次射擊命中目標(biāo)分別為事件A,B,C三次均未命中目標(biāo)的事件為D.
依題意P(A)=
1
2

設(shè)在xm處擊中目標(biāo)的概率為P(x),則P(x)=
k
x2
,
由x=100m時(shí)P(A)=
1
2

1
2
=
k
1002
,
∴k=5000,
P(x)=
5000
x
,P(B)=
5000
1502
=
2
9
P(C)=
5000
2002
=
1
8
,
P(D)=P(
.
A
)P(
.
B
)P(
.
C
)=
1
2
×
7
9
×
7
8
=
49
144

(Ⅰ)由于各次射擊都是獨(dú)立的,
∴該射手在三次射擊擊中目標(biāo)的概率為P=P(A)+P(
.
A
B)+P(
.
A
.
B
C)
,
P=P(A)+P(
.
A
)P(B)+P(
.
A
)P(
.
B
)P(C)

=
1
2
+
1
2
×
2
9
+
1
2
×
7
9
×
1
8
=
95
144

(Ⅱ)依題意,設(shè)射手甲得分為ξ,
P(ξ=3)=
1
2
,
P(ξ=2)=
1
2
×
2
9
=
1
9
,
P(ξ=1)=
1
2
×
7
9
×
1
8
=
7
144

P(ξ=0)=
49
144
,
∴ξ的分布列為
精英家教網(wǎng)
Eξ=3×
1
2
+2×
1
9
+1×
7
144
+0×
49
144
=
85
48
點(diǎn)評:考查運(yùn)用概率知識解決實(shí)際問題的能力,相互獨(dú)立事件是指,兩事件發(fā)生的概率互不影響,而對立事件是指同一次試驗(yàn)中,不會同時(shí)發(fā)生的事件,遇到求用至少來表述的事件的概率時(shí),往往先求它的對立事件的概率.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種項(xiàng)目的射擊比賽,開始時(shí)選手在距離目標(biāo)100m處射擊,若命中則記3分,且停止射擊.若第一次射擊未命中,可以進(jìn)行第二次射擊,但需在距離目標(biāo)150m處,這時(shí)命中目標(biāo)記2分,且停止射擊.若第二次仍未命中,還可以進(jìn)行第三次射擊,此時(shí)需在距離目標(biāo)200m處,若第三次命中則記1分,并停止射擊.若三次都未命中則記0分,并停止射擊.已知選手甲的命中率與目標(biāo)的距離的平方成反比,他在100m處擊中目標(biāo)的概率為
12
,且各次射擊都相互獨(dú)立.
(Ⅰ)求選手甲在三次射擊中命中目標(biāo)的概率;
(Ⅱ)設(shè)選手甲在比賽中的得分為ξ,求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種項(xiàng)目的射擊比賽,開始時(shí)在距目標(biāo)100m處射擊,如果命中記3分,且停止射擊;若第一次射擊未命中,可以進(jìn)行第二次射擊,但目標(biāo)已在150m處,這時(shí)命中記2分,且停止射擊;若第二次仍未命中,還可以進(jìn)行第三次射擊,此時(shí)目標(biāo)已在200m處,若第三次命中則記1分,并停止射擊;若三次都未命中,則記0分,且比賽結(jié)束.已知射手甲在100m處擊中目標(biāo)的概率為
12
,他的命中率與目標(biāo)的距離的平方成反比,且各次射擊都是獨(dú)立的.
(1)求射手甲在這次射擊比賽中命中目標(biāo)的概率;
(2)求射手甲在這次射擊比賽中得分的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種項(xiàng)目的射擊比賽,開始時(shí)在距目標(biāo)100m處射擊,如果命中記3分,且停止射擊;若第一次射擊未擊中,可以進(jìn)行第二次射擊,但目標(biāo)已在150m處,這時(shí)命中記2分,且停止射擊;若第二次仍未命中,還可以進(jìn)行第三射擊,此時(shí)目標(biāo)已在200m處,若第三次命中記1分,并停止射擊;若三次都未命中,則記0分.已知射手甲在100m處擊中目標(biāo)的概率為0.5,他的命中率與距離的平方成反比,且各次射擊都是獨(dú)立的,設(shè)這位射手在這次射擊比賽中的得分?jǐn)?shù)為ξ.
(I)求ξ的分布列;
(II)求ξ的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某種項(xiàng)目的射擊比賽,開始時(shí)在距目標(biāo)100米處射擊,如果命中記3分,且停止射擊; 若第一次射擊未命中,可以進(jìn)行第二次射擊,但目標(biāo)已經(jīng)在150米處,這時(shí)命中記2分,且停止射擊; 若第二次仍未命中,還可以進(jìn)行第三次射擊,此時(shí)目標(biāo)已在200米處,若第三次命中則記1分,并停止射擊; 若三次都未命中,則記0分.已知射手甲在100米處擊中目標(biāo)的概率為
12
,他的命中率與目標(biāo)的距離的平方成反比,且各次射擊都是獨(dú)立的.
(Ⅰ)求這名射手分別在第二次、第三次射擊中命中目標(biāo)的概率及三次射擊中命中目標(biāo)的概率;
(Ⅱ)設(shè)這名射手在比賽中得分?jǐn)?shù)為ξ,求隨機(jī)變量ξ的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案