已知,,處的切線方程為
(Ⅰ)求的單調區(qū)間與極值;
(Ⅱ)求的解析式;
(III)當時,恒成立,求的取值范圍.

(Ⅰ) 的增區(qū)間為,減區(qū)間為,.
(Ⅱ) ,(III) .

解析試題分析:利用導數(shù)求函數(shù)的單調性、極值,根據(jù)導數(shù)的幾何意義求函數(shù)的解析式;利用導數(shù)判定最值的方法求參數(shù)的取值范圍.
試題解析:(Ⅰ)令,得,              1分
∴當時,;當時,.
的增區(qū)間為,減區(qū)間為,, 3分
(Ⅱ) ,所以.

,∴
所以                           6分
(III)當時,,令
時,矛盾,                8分
首先證明恒成立.
,,故上的減函數(shù),
,故               10分
由(Ⅰ)可知故當時,
 
綜上         12分
考點:導數(shù)的應用,導數(shù)的幾何意義,導數(shù)最值的應用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖所示,將一矩形花壇擴建成一個更大的矩形花壇,要求的延長線上,的延長線上,且對角線點.已知米,米。

(1)設(單位:米),要使花壇的面積大于32平方米,求的取值范圍;
(2)若(單位:米),則當的長度分別是多少時,花壇的面積最大?并求出最大面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)
(1)求函數(shù)的單調區(qū)間;
(2)若在區(qū)間[0,2]上恒有,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分15分)已知函數(shù)
(1)當時,求最小值;
(2)若存在單調遞減區(qū)間,求的取值范圍;
(3)求證:).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)f(x)=x-ax+(a-1),.
(1)討論函數(shù)的單調性;(2)若,設,
(。┣笞Cg(x)為單調遞增函數(shù);
(ⅱ)求證對任意x,x,xx,有.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知是實數(shù),函數(shù),,分別是的導函數(shù),若在區(qū)間上恒成立,則稱在區(qū)間上單調性一致.
(Ⅰ)設,若函數(shù)在區(qū)間上單調性一致,求實數(shù)的取值范圍;
(Ⅱ)設,若函數(shù)在以為端點的開區(qū)間上單調性一致,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分13分)已知函數(shù)
(Ⅰ)當時,求函數(shù)的單調增區(qū)間;
(Ⅱ)求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知函數(shù)().
(Ⅰ)當時,求函數(shù)的極值;   
(Ⅱ)若對任意,不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知函數(shù)f(x)=Asin(ωx+φ)(A>0,|φ|<)圖像上一個最高點坐標為(2,2),這個最高點到相鄰最低點的圖像與x軸交于點(5,0).

(1)求f(x)的解析式;
(2)是否存在正整數(shù)m,使得將函數(shù)f(x)的圖像向右平移m個單位后得到一個偶函數(shù)的圖像?若存在,求m的最小值;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案