【題目】下圖是從2020214日至2020419日共66天的新冠肺炎中國/海外新增確診趨勢圖,根據(jù)該圖,下列結論中錯誤的是(

A.2020214日起中國已經(jīng)基本控制住國內的新冠肺炎疫情

B.2020313日至202043日海外新冠肺炎疫情快速惡化

C.66天海外每天新增新冠肺炎確診病例數(shù)的中位數(shù)在區(qū)間

D.海外新增新冠肺炎確診病例數(shù)最多的一天突破10萬例

【答案】C

【解析】

根據(jù)折線圖中的信息對每個選項中的結論進行分析判斷,得出答案.

A. 根據(jù)折線圖從2020214日起,中國新增確診人數(shù)幾乎為0,所以A正確.

B.根據(jù)折線圖可以看出從2020313日至202043日海外新增確診人數(shù)在小范圍內有增有減,但總體上新增確診人數(shù)在快速的增加,所以B正確.

C.由折線圖可得這66天海外每天新增新冠肺炎確診病例數(shù)的中位數(shù)大約出現(xiàn)在318日左右,其值小于,故C不正確.

D. 由折線圖可得在43日到4日和415日到16日海外新增新冠肺炎確診病例數(shù)都超過10萬例,所以D正確.

故選:C

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】網(wǎng)絡是一種先進的高頻傳輸技術,我國的技術發(fā)展迅速,已位居世界前列.華為公司20198月初推出了一款手機,現(xiàn)調查得到該款手機上市時間和市場占有率(單位:%)的幾組相關對應數(shù)據(jù).如圖所示的折線圖中,橫軸1代表20198月,2代表20199……,5代表201912月,根據(jù)數(shù)據(jù)得出關于的線性回歸方程為.若用此方程分析并預測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)(

A.20206B.20207C.20208D.20209

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,是橢圓的左、右焦點,離心率為,是平面內兩點,滿足,線段的中點在橢圓上,周長為12

1)求橢圓的方程;

2)若過的直線與橢圓交于,,求(其中為坐標原點)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了讓居民了解垃圾分類,養(yǎng)成垃圾分類的習慣,讓綠色環(huán)保理念深入人心.某市將垃圾分為四類:可回收物,餐廚垃圾,有害垃圾和其他垃圾.某班按此四類由位同學組成四個宣傳小組,其中可回收物宣傳小組有位同學,其余三個宣傳小組各有位同學.現(xiàn)從這位同學中選派人到某小區(qū)進行宣傳活動,則每個宣傳小組至少選派人的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,直線l的參數(shù)方程為為參數(shù)),以坐標原點為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為.

1)求的普通方程和C的直角坐標方程;

2)直線上的點為曲線內的點,且直線與曲線交于,且,求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小明每天從家步行去學校,有兩條路線可以選擇,第一條路線,需走天橋,不用等紅燈,平均用時910秒;第二條路線,要經(jīng)過兩個紅綠燈路口,如圖,A處為小明家,D處為學校,走路段240秒,在B處有一紅綠燈,紅燈時長120秒,綠燈時長30秒,走路段450秒,在C處也有一紅綠燈,紅燈時長100秒,綠燈時長50秒,走路段200.小明進行了60天的試驗,每天都選擇第二條路線,并記錄了在B處等待紅燈的時長,經(jīng)統(tǒng)計,60天中有48天在B處遇到紅燈,根據(jù)記錄的48天等待紅燈時長的數(shù)據(jù)繪制了下面的頻率分布直方圖.已知B處和C處的紅燈亮起的時刻恰好始終保持相同,且紅綠燈之間切換無時間間隔.

1)若小明選擇第二條路線,設當小明到達B處的時刻為B處紅燈亮起后的第x秒()時,小明在B處等待紅燈的時長為y秒,求y關于x的函數(shù)的解析式;

2)若小明選擇第二條路線,請估計小明在B處遇到紅燈的概率,并問小明是否可能在B處和C處都遇到紅燈;

3)若取區(qū)間中點作為該區(qū)間對應的等待紅燈的時長,以這兩條路線的平均用時作為決策依據(jù),小明應選擇哪一條路線?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某工廠的一臺某型號機器有2種工作狀態(tài):正常狀態(tài)和故障狀態(tài).若機器處于故障狀態(tài),則停機檢修.為了檢查機器工作狀態(tài)是否正常,工廠隨機統(tǒng)計了該機器以往正常工作狀態(tài)下生產(chǎn)的1000個產(chǎn)品的質量指標值,得出如圖1所示頻率分布直方圖.由統(tǒng)計結果可以認為,這種產(chǎn)品的質量指標值服從正態(tài)分布,其中近似為這1000個產(chǎn)品的質量指標值的平均數(shù),近似為這1000個產(chǎn)品的質量指標值的方差(同一組中的數(shù)據(jù)用該組區(qū)間中點值為代表).若產(chǎn)品的質量指標值全部在之內,就認為機器處于正常狀態(tài),否則,認為機器處于故障狀態(tài).

1)下面是檢驗員在一天內從該機器生產(chǎn)的產(chǎn)品中隨機抽取10件測得的質量指標值:

29 45 55 63 67 73 78 87 93 113

請判斷該機器是否出現(xiàn)故障?

2)若機器出現(xiàn)故障,有2種檢修方案可供選擇:

方案一:加急檢修,檢修公司會在當天排除故障,費用為700元;

方案二:常規(guī)檢修,檢修公司會在七天內的任意一天來排除故障,費用為200.

現(xiàn)需決策在機器出現(xiàn)故障時,該工廠選擇何種方案進行檢修,為此搜集檢修公司對該型號機器近100單常規(guī)檢修在第i,2,,7)天檢修的單數(shù),得到如圖2所示柱狀圖,將第i天常規(guī)檢修單數(shù)的頻率代替概率.已知該機器正常工作一天可收益200元,故障機器檢修當天不工作,若機器出現(xiàn)故障,該選擇哪種檢修方案?

附:,,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線的左、右焦點分別為F1、F2,過點F1作圓x2+y2a2的切線交雙曲線右支于點M,若tanF1MF22,又e為雙曲線的離心率,則e2的值為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,,,,,邊上一點,這里異于.由引邊的垂線是垂足,再由引邊的垂線是垂足,又由引邊的垂線是垂足.同樣的操作連續(xù)進行,得到點,.設,如圖所示.

1)求的值;

2)某同學對上述已知條件的研究發(fā)現(xiàn)如下結論:,問該同學這個結論是否正確并說明理由;

3)用表示

查看答案和解析>>

同步練習冊答案