已知橢圓的離心率為,其左焦點到點的距離為.

(1)求橢圓的方程;

(2)過右焦點的直線與橢圓交于不同的兩點,則內(nèi)切圓的圓面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.

 

【答案】

(1);(2)圓的面積的最大值為,直線方程.

【解析】

試題分析:本題考查橢圓的方程,直線與橢圓的位置關(guān)系及研究三角形內(nèi)切圓面積問題.(1)由橢圓的離心率和左焦點到點的距離為,建立方程組,求出的值,從而得出橢圓方程;(2)是探索性問題,研究是否存在過橢圓的右焦點的直線與橢圓交于不同的兩點,使得內(nèi)切圓的圓面積最大的問題,求解分三個步驟,根據(jù)條件得出面積的關(guān)系式,將用直線的斜率的倒數(shù)表示,再通過函數(shù)知識求面積的最大值;由此求出直線的方程;將由面積關(guān)系式得到的面積的最大值代入面積關(guān)系式,即可得到圓的半徑的最大值,進而求出圓的面積的最大值.

試題解析:(1)設(shè)橢圓左焦點,則,解得,,

故所求橢圓方程為.

(2)設(shè),,令,,設(shè)的內(nèi)切圓的半徑為,則的周長為,

因此若最大,則最大,

,由題設(shè)知直線的斜率不為0,可設(shè)直線的方程為

聯(lián)立方程組消去整理得,

由根與系數(shù)的關(guān)系得,

,

,令,則,由此得,

,即上單調(diào)遞增,

,則(當(dāng)且僅當(dāng)時,,),

這時所求內(nèi)切圓的面積的最大值為

故直線的方程為,內(nèi)切圓的面積的最大值為.

考點:橢圓方程,直線與橢圓的位置關(guān)系,三角形的內(nèi)切圓面積.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的離心率為e,兩焦點分別為F1、F2,拋物線C以F1為頂點、F2為焦點,點P為拋物線和橢圓的一個交點,若e|PF2|=|PF1|,則e的值為( 。
A、
1
2
B、
2
2
C、
3
3
D、以上均不對

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的離心率為
1
2
,焦點是(-3,0),(3,0),則橢圓方程為( 。
A、
x2
36
+
y2
27
=1
B、
x2
36
-
y2
27
=1
C、
x2
27
+
y2
36
=1
D、
x2
27
-
y2
36
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在由圓O:x2+y2=1和橢圓C:
x2
a2
+y2
=1(a>1)構(gòu)成的“眼形”結(jié)構(gòu)中,已知橢圓的離心率為
6
3
,直線l與圓O相切于點M,與橢圓C相交于兩點A,B.
(1)求橢圓C的方程;
(2)是否存在直線l,使得
OA
OB
=
1
2
OM
2
,若存在,求此時直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知橢圓的離心率為
2
2
,準(zhǔn)線方程為x=±8,求這個橢圓的標(biāo)準(zhǔn)方程;
(2)假設(shè)你家訂了一份報紙,送報人可能在早上6:30-7:30之間把報紙送到你家,你父親離開家去工作的時間在早上7:00-8:00之間,請你求出父親在離開家前能得到報紙(稱為事件A)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,A,B是橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右頂點,M是橢圓上異于A,B的任意一點,已知橢圓的離心率為e,右準(zhǔn)線l的方程為x=m.
(1)若e=
1
2
,m=4,求橢圓C的方程;
(2)設(shè)直線AM交l于點P,以MP為直徑的圓交MB于Q,若直線PQ恰過原點,求e.

查看答案和解析>>

同步練習(xí)冊答案