((本題滿分15分)
已知三個(gè)函數(shù)其中第二個(gè)函數(shù)和第三個(gè)函數(shù)中的為同一個(gè)常數(shù),且,它們各自的最小值恰好是方程的三個(gè)根.
(Ⅰ) 求證:;
(Ⅱ) 設(shè)是函數(shù)的兩個(gè)極值點(diǎn),求的取值范圍.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知二次函數(shù)f(x)=ax2+bx+c,(a<0)不等式f(x)>-2x的解集為(1,3).
(1)若方程f(x)+6a=0有兩個(gè)相等的實(shí)根,求f(x)的解析式;
(2)若f(x)的最大值為正數(shù),求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)函數(shù)
(Ⅰ)若函數(shù)在處取得極小值是,求的值;
(Ⅱ)求函數(shù)的單調(diào)遞增區(qū)間;
(Ⅲ)若函數(shù)在上有且只有一個(gè)極值點(diǎn), 求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
函數(shù)的定義域?yàn)?0,1](為實(shí)數(shù)).
⑴當(dāng)時(shí),求函數(shù)的值域;
⑵若函數(shù)在定義域上是減函數(shù),求的取值范圍;
⑶求函數(shù)在x∈(0,1]上的最大值及最小值,并求出函數(shù)取最值時(shí)的值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
.(本小題滿分12分)
已知函數(shù)f(x)=ax2+a2x+2b-a3,當(dāng)x∈(-2,6)時(shí),f(x)>0,
當(dāng)x∈(-∞,-2)∪(6,+∞)時(shí),f(x)<0,
(1)求f(x)的解析式.
(2)求f(x)在區(qū)間[1,10]上的最值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(14分)函數(shù)是定義在(-1,1)上的奇函數(shù),且
(1)求函數(shù)的解析式;
(2)利用定義證明在(-1,1)上是增函數(shù);
(3)求滿足的的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(滿分16分)
某醫(yī)藥研究所開發(fā)一種新藥,據(jù)檢測,如果成人按規(guī)定的劑量服用,服藥后每毫升血液中的含藥量為(微克)與服藥后的時(shí)間(小時(shí))之間近似滿足如圖所示的曲線,其中OA 是線段,曲線 ABC 是函數(shù)()的圖象,且是常數(shù).
(1)寫出服藥后y與x的函數(shù)關(guān)系式;
(2)據(jù)測定:每毫升血液中含藥量不少于2 微克時(shí)治療疾病有效.若某病人第一次服藥時(shí)間為早上 6 : 00 ,為了保持療效,第二次服藥最遲應(yīng)該在當(dāng)天的幾點(diǎn)鐘?
(3)若按(2)中的最遲時(shí)間服用第二次藥,則第二次服藥3個(gè)小時(shí)后,該病人每毫升血液中含藥量為多少微克。(結(jié)果用根號表示)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知關(guān)于x的二次方程
(1)若方程有兩根,其中一根在區(qū)間內(nèi),另一根在區(qū)間內(nèi),求m的取值范圍
(2)若方程兩根均在區(qū)間內(nèi),求m的取值范圍
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com