在極坐標系中,過圓ρ=4cosθ的圓心,且垂直于極軸的直線的極坐標方程為
 
考點:簡單曲線的極坐標方程
專題:計算題
分析:先將原極坐標方程ρ=4cosθ的兩邊同乘以ρ后化成直角坐標方程,再利用直角坐標方程進行求解即可.
解答: 解:由題意可知圓的標準方程為:
(x-2)2+y2=9,圓心是(2,0),
所求直線普通方程為x=2,
則極坐標方程為ρcosθ=2.
故答案為:ρcosθ=2.
點評:本題考查點的極坐標和直角坐標的互化,利用直角坐標與極坐標間的關系,即利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2,進行代換即得.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

一個幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A、
2
+1
2
π+1
B、
2
+1
2
π
C、
2
2
+1
2
π+1
D、
5
6
π+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=lg(3+2x-x2)的定義域是( 。
A、(-∞,-1)∪(3,+∞)
B、(-∞,-3)∪(1,+∞)
C、(-3,1)
D、(-1,3)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P是邊長為2的線段AB上任意一點,則PA>PB的概率為(  )
A、1
B、
1
3
C、0.5
D、
1
4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知扇形AOC的周長是6,中心角是1弧度,則該扇形的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知空間向量
a
=(0,-1,1)
,
b
=(1,0,1)
,則|2
a
+
b
|
=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,正方形ADEF與梯形ABCD所在的閏面互相垂直,AD⊥CD,AB∥CD,AB=AD=2,CD=4,M為CE的中點.
(I)求證:BM∥平面ADEF;
(Ⅱ)求平面BEC與平面ADEF所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋中共有6個除了顏色外完全相同的球,其中有1個紅球,2個白球和3個黑球,從袋中任取一球,顏色為黑色的概率等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
a
,
b
均為單位向量,若它們的夾角是60°,則|
a
-3
b
|等于
 

查看答案和解析>>

同步練習冊答案