已知某工廠生產(chǎn)件產(chǎn)品的成本為(元),
問(wèn):(1)要使平均成本最低,應(yīng)生產(chǎn)多少件產(chǎn)品?
(2)若產(chǎn)品以每件500元售出,要使利潤(rùn)最大,應(yīng)生產(chǎn)多少件產(chǎn)品?
(1) 1000 ;(2) 6000.
解析試題分析:(1)先根據(jù)題意設(shè)生產(chǎn)x件產(chǎn)品的平均成本為y元,再結(jié)合平均成本的含義得出函數(shù)y的表達(dá)式,最后利用導(dǎo)數(shù)求出此函數(shù)的最小值即可;
(2)先寫出利潤(rùn)函數(shù)的解析式,再利用導(dǎo)數(shù)求出此函數(shù)的極值,從而得出函數(shù)的最大值,即可解決問(wèn)題:要使利潤(rùn)最大,應(yīng)生產(chǎn)多少件產(chǎn)品..
試題解析:解:(1)設(shè)平均成本為元,則,
,令得.
當(dāng)在附近左側(cè)時(shí);
在附近右側(cè)時(shí),故當(dāng)時(shí),取極小值,而函數(shù)只有一個(gè)點(diǎn)使,故函數(shù)在該點(diǎn)處取得最小值,因此,要使平均成本最低,應(yīng)生產(chǎn)1000件產(chǎn)品. 6分;
(2)利潤(rùn)函數(shù)為,,
令,得,當(dāng)在附近左側(cè)時(shí);在附近右側(cè)時(shí),故當(dāng)時(shí),取極大值,而函數(shù)只有一個(gè)點(diǎn)使,故函數(shù)在該點(diǎn)處取得最大值,因此,要使利潤(rùn)最大,應(yīng)生產(chǎn)6000件產(chǎn)品. 12分;
考點(diǎn):導(dǎo)數(shù)的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)()
(1)當(dāng)a=2時(shí),求在區(qū)間[e,e2]上的最大值和最小值;
(2)如果函數(shù)、、在公共定義域D上,滿足<<,那么就稱為、的“伴隨函數(shù)”.已知函數(shù),,若在區(qū)間(1,+∞)上,函數(shù)是、的“伴隨函數(shù)”,求a的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),,其中,為自然對(duì)數(shù)的底數(shù).
(1)若在處的切線與直線垂直,求的值;
(2)求在上的最小值;
(3)試探究能否存在區(qū)間,使得和在區(qū)間上具有相同的單調(diào)性?若能存在,說(shuō)明區(qū)間的特點(diǎn),并指出和在區(qū)間上的單調(diào)性;若不能存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù),.
(1)若函數(shù)在處取得極值,求的值;
(2)若函數(shù)的圖象上存在兩點(diǎn)關(guān)于原點(diǎn)對(duì)稱,求的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知曲線 y = x3 + x-2 在點(diǎn) P0 處的切線 平行于直線
4x-y-1=0,且點(diǎn) P0 在第三象限,
⑴求P0的坐標(biāo);
⑵若直線 , 且 l 也過(guò)切點(diǎn)P0 ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
設(shè)函數(shù)的定義域是,其中常數(shù).(注:
(1)若,求的過(guò)原點(diǎn)的切線方程.
(2)證明當(dāng)時(shí),對(duì),恒有.
(3)當(dāng)時(shí),求最大實(shí)數(shù),使不等式對(duì)恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).當(dāng)時(shí),函數(shù)取得極值.
(1)求函數(shù)的解析式;
(2)若方程有3個(gè)解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)求函數(shù)的單調(diào)區(qū)間;
(2)證明:對(duì)任意的,存在唯一的,使;
(3)設(shè)(2)中所確定的關(guān)于的函數(shù)為,證明:當(dāng)時(shí),有.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)在上是減函數(shù),在上是增函數(shù),函數(shù)在上有三個(gè)零點(diǎn),且是其中一個(gè)零點(diǎn).
(1)求的值;
(2)求的取值范圍;
(3)設(shè),且的解集為,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com