已知A,B,C是銳角△ABC的三個(gè)內(nèi)角,且向量
a
=(tanA,-sinA),
b
=(
1
2
sin2A,cosB),向量
a
,
b
的夾角為θ.
(1)求證:0<θ<
π
2
;
(2)求函數(shù)f(θ)=2sin2
π
4
+θ)-
3
cos2θ的最大值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算,三角函數(shù)中的恒等變換應(yīng)用,三角函數(shù)的最值
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì),平面向量及應(yīng)用
分析:(1)由向量的數(shù)量積的坐標(biāo)表示和同角的基本關(guān)系式,結(jié)合銳角三角形的定義和正弦函數(shù)的單調(diào)性,即可得到
a
b
>0,又由向量共線的知識(shí),判斷
a
b
不共線,進(jìn)而得證;
(2)運(yùn)用二倍角的余弦公式和兩角差的正弦公式,化簡(jiǎn)函數(shù),再由θ的范圍,結(jié)合正弦函數(shù)的圖象和性質(zhì),即可得到最大值.
解答: (1)證明:由向量
a
=(tanA,-sinA),
b
=(
1
2
sin2A,cosB),
a
b
=
1
2
sin2AtanA-sinAcosB=sinAcosAtanA-sinAcosB=sin2A-sinAcosB
=sinA(sinA-cosB),
由于△ABC為銳角三角形,則A+B>90°,即有A>90°-B,
sinA>sin(90°-B),即sinA>cosB,
則有
a
b
>0,
且tanAcosB≠-
1
2
sinAsin2A,即
a
,
b
不共線,
則向量
a
,
b
的夾角θ的范圍是0<θ<
π
2
;
(2)解:函數(shù)f(θ)=2sin2
π
4
+θ)-
3
cos2θ=1-cos2(
π
4
+θ)-
3
cos2θ
=1+sin2θ-
3
cos2θ=1+2(
1
2
sin2θ-
3
2
cos2θ)=1+2sin(2θ-
π
3
),
由0<θ<
π
2
,可得-
π
3
<2θ-
π
3
3

則當(dāng)2θ-
π
3
=
π
2
,即θ=
12
時(shí),sin(2θ-
π
3
)取得最大值1,
f(θ)取得最大值3.
點(diǎn)評(píng):本題考查向量數(shù)量積的坐標(biāo)表示,主要考查三角函數(shù)的化簡(jiǎn)和求值,運(yùn)用正弦函數(shù)的圖象和性質(zhì)是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

“cos2α=-
3
2
”是“α=kπ+
12
,k∈Z
”的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,a1=1,且Sn=n(Sn+1+an+1)(n∈N+).
(1)求Sn;
(2)若存在n≥2,使Sn-1λSn,Sn+1成等差數(shù)列,求正整數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)半徑為1的球體經(jīng)過(guò)切割后,剩余部分幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A、16π
B、14π
C、4π
D、
8
3
π

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解方程:q6-9q3+8=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC中,a=2,C=
π
4
,cos
B
2
=
2
5
5
,則邊c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是△ABC所在平面上的一點(diǎn),若
PO
=
a
PA
+b
PB
+c
PC
a+b+c
(其中P是ABC所在平面內(nèi)任意一點(diǎn)),則O點(diǎn)是△ABC的( 。
A、外心B、內(nèi)心C、重心D、垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
2
x
+alnx-2(a>0).
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)y=f(x)的單調(diào)區(qū)間;
(Ⅱ)若對(duì)于?x∈(0,+∞)都有f(x)>2(a-1)成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知不恒為零的函數(shù)f(x)對(duì)任意實(shí)數(shù)x,y滿足f(x+y)+f(x-y)=2f(x)+2f(y),則函數(shù)f(x)為
 
函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案