函數(shù)f(x)=x3-3x2+1的遞增區(qū)間是
 
考點:利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:先求出函數(shù)的導(dǎo)數(shù),令導(dǎo)函數(shù)小于0,解不等式求出即可.
解答: 解:∵f′(x)=3x2-6x,
令f′(x)>0,解得:x>2,x<0,
∴f(x)在(-∞,0),(2,+∞)遞增,
故答案為:(-∞,0),(2,+∞).
點評:本題考查了函數(shù)的單調(diào)性,導(dǎo)數(shù)的應(yīng)用,是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a∈R,函數(shù)f(x)=x3-x2-x+a,求f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)O是△ABC的三邊中垂線的交點,a,b,c分別為角A,B,C對應(yīng)的邊,若b=4,c=2,則
BC
AO
的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

無窮數(shù)列{an}中,a1,a2,…,am是首項為10,公差為-2的等差數(shù)列;am+1,am+2,…,a2m是首項為
1
2
,公比為
1
2
的等比數(shù)列(其中m≥3,m∈N*),并且對于任意的n∈N*,都有an+2m=an成立.若a51=
1
64
,則m的取值集合為
 
.記數(shù)列{an}的前n項和為Sn,則使得S128m+5≥2013(m≥3
,
 
 
m∈N*)
的m的取值集合為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公比為q(q≠1)的等比數(shù)列,且a1,a3,a2成等差數(shù)列.
(1)求q的值;
(2)設(shè){bn}是以-
1
2
為首項,q為公差的等差數(shù)列,求{bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,an=4n-5,則數(shù)列{an}的第20項是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=5msin(ωx+
π
5
),若對任意x∈R都有f(x1)≤f(x)≤f(x2)成立,且|x1-x2|的最小值為2,則ω=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足an=2n-1,設(shè)函數(shù)f(n)=
an,n為奇數(shù)
f(
n
2
),n為偶數(shù)
,cn=f(2n+4),n∈N*,數(shù)列{cn}的前n項和Tn=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過點P(1,-1)且與直線2x-3y+5=0垂直的直線的方程是( 。
A、2x-3y-5=0
B、2x+3y+1=0
C、3x+2y-1=0
D、3x+2y+5=0

查看答案和解析>>

同步練習(xí)冊答案