數(shù)列的前項(xiàng)和,則__ ▲ __.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

數(shù)列滿足,其中,求值,猜想,并用數(shù)學(xué)歸納法加以證明。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分15分)楊輝是中國(guó)南宋末年的一位杰出的數(shù)學(xué)家、數(shù)學(xué)教育家,楊輝三角是楊輝的一大重要研究成果,它的許多性質(zhì)與組合數(shù)的性質(zhì)有關(guān),楊輝三角中蘊(yùn)藏了許多優(yōu)美的規(guī)律.下圖是一個(gè)11階楊輝三角:

(1)求第20行中從左到右的第3個(gè)數(shù);
(2)若第行中從左到右第13與第14個(gè)數(shù)的比為,求的值;
(3)寫出第行所有數(shù)的和,寫出階(包括階)楊輝三角中的所有數(shù)的和;
(4)在第3斜列中,前5個(gè)數(shù)依次為1,3,6,10,15;第4斜列中,第5個(gè)數(shù)為35,我們發(fā)現(xiàn),事實(shí)上,一般地有這樣的結(jié)論:第斜列中(從右上到左下)前個(gè)數(shù)之和,一定等于第斜列中第個(gè)數(shù).
試用含有的數(shù)學(xué)式子表示上述結(jié)論,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(14分) 已知等差數(shù)列的定義為:在一個(gè)數(shù)列中,從第二項(xiàng)起,如果每一項(xiàng)與它的前一項(xiàng)的差都為同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等差數(shù)列,這個(gè)常數(shù)叫做該數(shù)列的公差.(1)類比等差數(shù)列的定義給出“等和數(shù)列”的定義;(2) 已知數(shù)列是等和數(shù)列,且,公和為,求 的值,并猜出這個(gè)數(shù)列的通項(xiàng)公式(不要求證明)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
等比數(shù)列{}的前n 項(xiàng)和為,已知,,成等差數(shù)列
(1)求{}的公比q
(2)若=3,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列前n項(xiàng)和為Sn,且(Ⅰ)求的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足b1=1且bn+1=bn+an(n≥1),求數(shù)列{bn}的通項(xiàng)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

設(shè)數(shù)列,滿足,,。
(1)若是等差數(shù)列,求的通項(xiàng)公式;
(2)若是等比數(shù)列,求的通項(xiàng)公式;
(3)在(1)、(2)的條件下,當(dāng)時(shí),哪一個(gè)較大?證明你的結(jié)論。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

等差數(shù)列中,a2=0,a4=2,,則該數(shù)列的前9項(xiàng)和=  ▲   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知等差數(shù)列{αn}中,a2=7,a4=15,則前10項(xiàng)和S10等于
A.100B.210C.380D.400

查看答案和解析>>

同步練習(xí)冊(cè)答案