【題目】已知數(shù)列{an}的前n項(xiàng)和為Sn , 且滿足Sn=2an﹣2.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)函數(shù)f(x)=( x , 數(shù)列{bn}滿足條件b1=2,f(bn+1)= ,(n∈N*),若cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

【答案】解:(Ⅰ)當(dāng)n=1,a1=2a1﹣2,即a1=2,
當(dāng)n≥2時(shí),Sn1=2an1﹣2,
an=Sn﹣Sn1=2an﹣2﹣(2an1﹣2)=2an﹣2an1 ,
∴an=2an1 ,
∴數(shù)列{an}是以2為首項(xiàng),2為公比的等比數(shù)列,
∴an=2×2n1=2n ,
數(shù)列{an}的通項(xiàng)公式an=2n;
(Ⅱ∵)f(x)=( x , f(bn+1)= ,(n∈N*),
= ,
= ,即bn+1=bn+3,
∴bn+1﹣bn=3,
b1=f(﹣1)=2,
∴數(shù)列{bn}是以2為首項(xiàng),3為公差的等差數(shù)列,
∴bn=3n﹣1,
cn= =
∴Tn= + + +…+ + ,
Tn= + + +…+ + ,
兩式相減得: Tn=1+ + + +…+
=1+ × ,
=1+ (1﹣ )﹣
∴Tn=2+3(1﹣ )﹣ ,
=2+3 ,
∴Tn=5
【解析】(Ⅰ)由當(dāng)n=1,a1=2,當(dāng)n≥2時(shí),Sn1=2an1﹣2,an=Sn﹣Sn1=2an﹣2an1 , 可知an=2an1 , 數(shù)列{an}是以2為首項(xiàng),2為公比的等比數(shù)列,數(shù)列{an}的通項(xiàng)公式an=2n;(Ⅱ)f(bn+1)= ,(n∈N*),代入即可求得bn+1=bn+3,b1=f(﹣1)=2,數(shù)列{bn}是以2為首項(xiàng),3為公差的等差數(shù)列,cn= = ,利用“錯(cuò)位相減法”即可求得,數(shù)列{cn}的前n項(xiàng)和Tn
【考點(diǎn)精析】通過靈活運(yùn)用數(shù)列的前n項(xiàng)和和數(shù)列的通項(xiàng)公式,掌握數(shù)列{an}的前n項(xiàng)和sn與通項(xiàng)an的關(guān)系;如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了響應(yīng)教育部頒布的《關(guān)于推進(jìn)中小學(xué)生研學(xué)旅行的意見》,某校計(jì)劃開設(shè)八門研學(xué)旅行課程,并對全校學(xué)生的選課意向進(jìn)行調(diào)查(調(diào)查要求全員參與,每個(gè)學(xué)生必須從八門課程中選出唯一一門課程).本次調(diào)查結(jié)果如下.

圖中,課程為人文類課程,課程為自然科學(xué)類課程.為進(jìn)一步研究學(xué)生選課意向,結(jié)合上面圖表,采取分層抽樣方法從全校抽取1%的學(xué)生作為研究樣本組(以下簡稱“組”).

(Ⅰ)在“組”中,選擇人文類課程和自然科學(xué)類課程的人數(shù)各有多少?

(Ⅱ)某地舉辦自然科學(xué)營活動(dòng),學(xué)校要求:參加活動(dòng)的學(xué)生只能是“組”中選擇

程或課程的同學(xué),并且這些同學(xué)以自愿報(bào)名繳費(fèi)的方式參加活動(dòng). 選擇課程的學(xué)生中有人參加科學(xué)營活動(dòng),每人需繳納元,選擇課程的學(xué)生中有人參加該活動(dòng),每人需繳納元.記選擇課程和課程的學(xué)生自愿報(bào)名人數(shù)的情況為,參加活動(dòng)的學(xué)生繳納費(fèi)用總和為元.

①當(dāng)時(shí),寫出的所有可能取值;

②若選擇課程的同學(xué)都參加科學(xué)營活動(dòng),求元的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱與四邊形BDEF相交于BD, 平面ABCD,DE//BF,BF=2DE,AF⊥FC,M為CF的中點(diǎn),

(I)求證:GM//平面CDE;

(II)求證:平面ACE⊥平面ACF.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=
(1)求函數(shù)f(x)的定義域和值域;
(2)判斷函數(shù)f(x)的奇偶性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為調(diào)查某社區(qū)居民的業(yè)余生活狀況,研究這一社區(qū)居民在20:00﹣22:00時(shí)間段的休閑方式與性別的關(guān)系,隨機(jī)調(diào)查了該社區(qū)80人,得到下面的數(shù)據(jù)表:

休閑方式
性別

看電視

看書

合計(jì)

10

50

60

10

10

20

合計(jì)

20

60

80


(1)根據(jù)以上數(shù)據(jù),能否有99%的把握認(rèn)為“在20:00﹣22:00時(shí)間段居民的休閑方式與性別有關(guān)系”?
(2)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查3名在該社區(qū)的男性,設(shè)調(diào)查的3人在這一時(shí)間段以看書為休閑方式的人數(shù)為隨機(jī)變量X.求X的數(shù)學(xué)期望和方差.

P(X2≥k)

0.050

0.010

0.001

k

3.841

6.635

10.828

附:X2=

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知等差數(shù)列{an}首項(xiàng)a1=1,公差為d,且數(shù)列 是公比為4的等比數(shù)列,
(1)求d;
(2)求數(shù)列{an}的通項(xiàng)公式an及前n項(xiàng)和Sn;
(3)求數(shù)列 的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c.
(Ⅰ)若a,b,c成等差數(shù)列,證明:sinA+sinC=2sin(A+C);
(Ⅱ)若a,b,c成等比數(shù)列,且c=2a,求cosB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓x2+y2+x﹣6y+m=0與直線x+2y﹣3=0相交于P,Q兩點(diǎn),O為原點(diǎn),且OP⊥OQ,求實(shí)數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了121日至125日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:

日 期

121

122

123

124

125

溫差°C

10

11

13

12

8

發(fā)芽數(shù)(顆)

23

25

30

26

16

該農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;

2)若選取的是121日與125日的兩組數(shù)據(jù),請根據(jù)122日至124日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程;

3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(注:

查看答案和解析>>

同步練習(xí)冊答案