精英家教網 > 高中數學 > 題目詳情
一個口袋中裝有大小相同的2個白球和3個黑球.
(Ⅰ)從中摸出兩個球,求兩球恰好顏色不同的概率;
(Ⅱ)從中摸出一個球,放回后再摸出一個球,求兩球恰好顏色不同的概率.
分析:(Ⅰ)本題是一個等可能事件的概率,摸出兩個球共有方法C52種,其中兩球一白一黑有C21•C31種,得到概率.
(II)摸出一球得白球的概率為
2
5
=0.4
,摸出一球得黑球的概率為
3
5
=0.6
,“放回后再摸一次,兩球顏色不同”指“先白再黑”或“先黑再白”,這兩種情況是互斥的,得到概率.
解答:解:(Ⅰ)由題意知本題是一個等可能事件的概率
記“摸出兩個球,兩球恰好顏色不同”為A,
摸出兩個球共有方法C52=10種,
其中兩球一白一黑有C21•C31=6種.
P(A)=
C
1
2
C
1
3
C
2
5
=
3
5

(Ⅱ)記摸出一球,放回后再摸出一個球“兩球恰好顏色不同”為B,
摸出一球得白球的概率為
2
5
=0.4
,摸出一球得黑球的概率為
3
5
=0.6
,
“放回后再摸一次,兩球顏色不同”指“先白再黑”或“先黑再白”,這兩種情況是互斥的
∴P(B)=0.4×0.6+0.6×0.4=0.48
點評:本題考查等可能事件的概率公式,本題解題的關鍵是寫出試驗發(fā)生包含的事件數和滿足條件的事件數,再用公式求解.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

一個口袋中裝有大小相同的2個白球和3個黑球,從中摸出一個球,放回后再摸出一個球,則兩次摸出的球恰好顏色不同的概率為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

一個口袋中裝有大小相同的n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎.
(I)試用n表示一次摸獎中獎的概率p;
(II)記從口袋中三次摸獎(每次摸獎后放回)恰有一次中獎的概率為m,用p表示恰有一次中獎的概率m,求m的最大值及m取最大值時p、n的值;
(III)當n=15時,將15個紅球全部取出,全部作如下標記:記上i號的有i個(i=1,2,3,4),共余的紅球記上0號.并將標號的15個紅球放人另一袋中,現從15個紅球的袋中任取一球,ξ表示所取球的標號,求ξ的分布列、期望和方差.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•惠州模擬)一個口袋中裝有大小相同的2個白球和4個黑球.
(1)采取放回抽樣方式,從中摸出兩個球,求兩球恰好顏色不同的概率;
(2)采取不放回抽樣方式,從中摸出兩個球,求摸得白球的個數的期望和方差.

查看答案和解析>>

科目:高中數學 來源: 題型:

一個口袋中裝有大小相同的8個白球和7個黑球,從中任意摸出2個球,則摸出的2個球至少有一個是白球的概率是
86
105
86
105
(用數字作答)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•孝感模擬)一個口袋中裝有大小相同的n個紅球(n≥5且n∈N)和5個白球,一次摸獎從中摸兩個球,兩個球的顏色不同則為中獎.
(1)記三次摸獎(每次摸獎后放回)恰有一次中獎的概率為P.試問當n等于多少時,P的值最大?
(2)在(1)的條件下,將5個白球全部取出后,對剩下的n個紅球全部作如下標記:記上i號的有i個(i=1,2,3,4),其余的紅球記上0號,現從袋中任取一球.ξ表示所取球的標號,求ξ的分布列,期望和方差.

查看答案和解析>>

同步練習冊答案