【題目】已知以點C(t∈R,t≠0)為圓心的圓與x軸交于點O和點A,與y軸交于點O和點B,其中O為原點.
(1)求證:△OAB的面積為定值;
(2)設(shè)直線y=-2x+4與圓C交于點M,N,若OM=ON,求圓C的方程.
【答案】(1)證明見解析(2)圓C的方程為(x-2)2+(y-1)2=5
【解析】
(1)先求出圓C的方程(x-t)2+=t2+,再求出|OA|,|0B|的長,即得△OAB的面積為定值;(2)根據(jù)t得到t=2或t=-2,再對t分類討論得到圓C的方程.
(1)證明:因為圓C過原點O,所以OC2=t2+.
設(shè)圓C的方程是(x-t)2+=t2+,
令x=0,得y1=0,y2=;
令y=0,得x1=0,x2=2t,
所以S△OAB=OA·OB=×|2t|×||=4,
即△OAB的面積為定值.
(2)因為OM=ON,CM=CN,所以OC垂直平分線段MN.
因為kMN=-2,所以kOC=.
所以t,解得t=2或t=-2.
當(dāng)t=2時,圓心C的坐標(biāo)為(2,1),OC=,
此時,圓心C到直線y=-2x+4的距離d=<,圓C與直線y=-2x+4相交于兩點.
符合題意,此時,圓的方程為(x-2)2+(y-1)2=5.
當(dāng)t=-2時,圓心C的坐標(biāo)為(-2,-1),OC=,此時C到直線y=-2x+4的距離d=.圓C與直線y=-2x+4不相交,
所以t=-2不符合題意,舍去.
所以圓C的方程為(x-2)2+(y-1)2=5.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是首項的等差數(shù)列,設(shè).
(1)求證:是等比數(shù)列;
(2)記,求數(shù)列的前項和;
(3)在(2)的條件下,記,若對任意正整數(shù),不等式恒成立,求整數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐中,底面為梯形,,.是的中點,底面,在平面上的正投影為點,延長交于點.
(1)求證:為中點;
(2)若,,在棱上確定一點,使得平面,并求出與面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】共享單車因綠色、環(huán)保、健康的出行方式,在國內(nèi)得到迅速推廣.最近,某機(jī)構(gòu)在某地區(qū)隨機(jī)采訪了10名男士和10名女士,結(jié)果男士、女士中分別有7人、6人表示“經(jīng)常騎共享單車出行”,其他人表示“較少或不選擇騎共享單車出行”.
(1)從這些男士和女士中各抽取一人,求至少有一人“經(jīng)常騎共享單車出行”的概率;
(2)從這些男士中抽取一人,女士中抽取兩人,記這三人中“經(jīng)常騎共享單車出行”的人數(shù)為,求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】家政服務(wù)公司根據(jù)用戶滿意程度將本公司家政服務(wù)員分為兩類,其中A類服務(wù)員12名,B類服務(wù)員名
(1)若采用分層抽樣的方法隨機(jī)抽取20名家政服務(wù)員參加技術(shù)培訓(xùn),抽取到B類服務(wù)員的人數(shù)是16, 求的值
(2)某客戶來公司聘請2名家政服務(wù)員,但是由于公司人員安排已經(jīng)接近飽和,只有3名A類家政服務(wù)員和2名B類家政服務(wù)員可供選擇
①請列出該客戶的所有可能選擇的情況
②求該客戶最終聘請的家政服務(wù)員中既有A類又有B類的概率來源:學(xué)|科|網(wǎng)]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓 的長軸長是短軸長的2倍,且過點.
⑴求橢圓的方程;
⑵若在橢圓上有相異的兩點(三點不共線),為坐標(biāo)原點,且直線,直線,直線的斜率滿足.
(。┣笞C: 是定值;
(ⅱ)設(shè)的面積為,當(dāng)取得最大值時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為常數(shù)),曲線在與軸的交點A處的切線與軸平行.
(1)求的值及函數(shù)的單調(diào)區(qū)間;
(2)若存在不相等的實數(shù)使成立,試比較與的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為為參數(shù),以坐標(biāo)原點O為極點,以x軸正半軸為極軸的極坐標(biāo)系中,曲線C的極坐標(biāo)方程為.
求直線l的普通方程及曲線C的直角坐標(biāo)方程;
若直線l與曲線C交于A,B兩點,求線段AB的中點P到坐標(biāo)原點O的距離.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com