4.一個空間幾何體的三視圖如下,則這個空間幾何體的體積是( 。
A.2+$\frac{4π}{3}$B.2+$\frac{π}{3}$C.1+$\frac{4π}{3}$D.10+8π

分析 由三視圖得到幾何體是兩個球與長方體的組合體,根據(jù)圖中數(shù)據(jù)計算體積即可.

解答 解:由三視圖得到幾何體是由半徑為0.5的兩個球與長寬高分別是2,1,1的長方體組合而成,所以體積為$2×\frac{4}{3}π(\frac{1}{2})^{3}+2×1×1$=$\frac{π}{3}$+2;
故選:B.

點評 本題考查了幾何體的三視圖還原幾何體;屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=4+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t為參數(shù)),以坐標原點為極點,x軸的非負半軸為極軸,建立極坐標系,圓C的極坐標方程為ρ=4cosθ,直線l與圓C交于A,B兩點.
(1)求圓C的直角坐標方程及弦AB的長;
(2)動點P在圓C上(不與A,B重合),試求△ABP的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.正項等比數(shù)列{an}中,a1+a4+a7=2,a3+a6+a9=18,則{an}的前9項和S9=( 。
A.14B.26C.30D.29

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=(2x-1)ex,a=f(1),b=f(-$\sqrt{2}$),c=f(-ln2),d=f(-$\frac{1}{2}$),則(  )
A.a>b>c>dB.b>a>c>dC.d>a>b>cD.a>d>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知實數(shù)a,b,c滿足a2+b=lna,則(a-c)2+(b+c-2)2的最小值為( 。
A.2$\sqrt{2}$B.8C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.如圖,F(xiàn)1、F2是橢圓C1與雙曲線C2的公共焦點,A、B分別是C1、C2在第二、四象限的公共點,若AF1⊥BF1,且∠AF1O=$\frac{π}{3}$,則C1與C2的離心率之和為(  )
A.2$\sqrt{3}$B.4C.2$\sqrt{5}$D.2$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$≥$\frac{9}{π}$成立;在四邊形ABCD中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$≥$\frac{16}{2π}$成成立;在五邊形ABCDE中,不等式$\frac{1}{A}$+$\frac{1}{B}$+$\frac{1}{C}$+$\frac{1}{D}$+$\frac{1}{E}$≥$\frac{25}{3π}$成立.猜想在n邊形中,不等式$\frac{1}{A_1}+\frac{1}{A_2}+\frac{1}{A_3}+…+\frac{1}{A_n}≥\frac{n^2}{(n-2)π}$成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.某三棱柱的三視圖如圖所示,該三棱柱的表面積為3+2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知$\overrightarrow{OA}$=(1,1,0),$\overrightarrow{OB}$=(4,1,0),$\overrightarrow{OC}$=(4,5,-1),則向量$\overrightarrow{AB}$和$\overrightarrow{AC}$的夾角的余弦值是$\frac{3\sqrt{26}}{26}$.

查看答案和解析>>

同步練習(xí)冊答案