如圖,曲線G的方程為y2=2x( y≥0).以原點(diǎn)為圓心,以t(t>0)為半徑的圓分別與曲線G和y軸的正半軸相交于點(diǎn)A與點(diǎn)B.直線AB與x軸相交于點(diǎn)C.
(Ⅰ)求點(diǎn)A的橫坐標(biāo)a與點(diǎn)C的橫坐標(biāo)c的關(guān)系式;
(Ⅱ)設(shè)曲線G上點(diǎn)D的橫坐標(biāo)為a+2,求證:直線CD的斜率為定值.
【答案】分析:(Ⅰ)先由點(diǎn)A在圓上得到a2+2a=t2.在利用A,B,C三點(diǎn)在一直線上,把t消去就可得到關(guān)于點(diǎn)A的橫坐標(biāo)a與點(diǎn)C的橫坐標(biāo)c的關(guān)系式;
(Ⅱ)由點(diǎn)D的橫坐標(biāo)為a+2代入曲線G的方程求出點(diǎn)D的坐標(biāo),再利用(Ⅰ)找到的點(diǎn)C(c,0),就可求出直線CD的斜率.
解答:解:(Ⅰ)由題意知,
因?yàn)閨OA|=t,所以a2+2a=t2
由于t>0,故有. (1)
由點(diǎn)B(0,t),C(c,0)的坐標(biāo)知,
直線BC的方程為
又因點(diǎn)A在直線BC上,故有,
將(1)代入上式,得
解得
(Ⅱ)因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131023212928565153082/SYS201310232129285651530018_DA/6.png">,所以直線CD的斜率為
所以直線CD的斜率為定值.
點(diǎn)評(píng):本小題綜合考查平面解析幾何知識(shí),主要涉及平面直角坐標(biāo)系中的兩點(diǎn)間距離公式、直線的方程與斜率、拋物線上的點(diǎn)與曲線方程的關(guān)系,考查運(yùn)算能力與思維能力、綜合分析問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,曲線G的方程為y2=2x( y≥0).以原點(diǎn)為圓心,以t(t>0)為半徑的圓分別與曲線G和y軸的正半軸相交于點(diǎn)A與點(diǎn)B.直線AB與x軸相交于點(diǎn)C.
(Ⅰ)求點(diǎn)A的橫坐標(biāo)a與點(diǎn)C的橫坐標(biāo)c的關(guān)系式;
(Ⅱ)設(shè)曲線G上點(diǎn)D的橫坐標(biāo)為a+2,求證:直線CD的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(07年安徽卷理)(本小題滿分12分)

如圖,曲線G的方程為y2=20(y≥0).以原點(diǎn)為圓心,以tt >0)為半徑的圓分別與曲線Gy軸的正半軸相交于點(diǎn)A與點(diǎn)B.直線ABx軸相交于點(diǎn)C.

(Ⅰ)求點(diǎn)A的橫坐標(biāo)a與點(diǎn)C的橫坐標(biāo)c的關(guān)系式;

(Ⅱ)設(shè)曲線G上點(diǎn)D的橫坐標(biāo)為a+2,求證:直線CD的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,曲線G的方程為y2=20(y≥0).以原點(diǎn)為圓心,以tt >0)為半徑的圓分別與曲線Gy軸的正半軸相交于點(diǎn)A與點(diǎn)B.直線ABx軸相交于點(diǎn)C.

(Ⅰ)求點(diǎn)A的橫坐標(biāo)a與點(diǎn)C的橫坐標(biāo)c的關(guān)系式;

(Ⅱ)設(shè)曲線G上點(diǎn)D的橫坐標(biāo)為a+2,求證:直線CD的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2007年普通高等學(xué)校招生全國(guó)統(tǒng)一考試?yán)砜茢?shù)學(xué)卷(安徽) 題型:解答題

(本小題滿分12分)

如圖,曲線G的方程為y2=20(y≥0).以原點(diǎn)為圓心,以tt >0)為半徑的圓分別與曲線Gy軸的正半軸相交于點(diǎn)A與點(diǎn)B.直線ABx軸相交于點(diǎn)C.

(Ⅰ)求點(diǎn)A的橫坐標(biāo)a與點(diǎn)C的橫坐標(biāo)c的關(guān)系式;

(Ⅱ)設(shè)曲線G上點(diǎn)D的橫坐標(biāo)為a+2,求證:直線CD的斜率為定值.

                  

 

查看答案和解析>>

同步練習(xí)冊(cè)答案