函數(shù)f(x)=ex+
1
2
x-2的零點(diǎn)所在的區(qū)間是( 。
A、(0,
1
2
B、(
1
2
,1)
C、(1,2)
D、(2,3)
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:將選項(xiàng)中各區(qū)間兩端點(diǎn)值代入f(x),滿足f(a)•f(b)<0(a,b為區(qū)間兩端點(diǎn))的為答案.
解答: 解:因?yàn)閒(
1
2
)=
e
-
7
4
3
-
7
4
<0,
f(1)=e-1>0,
所以零點(diǎn)在區(qū)間(
1
2
,1)上,
故選B.
點(diǎn)評:本題考查了函數(shù)零點(diǎn)的概念與零點(diǎn)定理的應(yīng)用,屬于容易題.函數(shù)零點(diǎn)附近函數(shù)值的符號相反,這類選擇題通常采用代入排除的方法求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足
1
an+1
-
1
an
=d(n∈N*,d為常數(shù)),則稱數(shù)列{an}為“調(diào)和數(shù)列”,已知正項(xiàng)數(shù)列{
1
bn
}為“調(diào)和數(shù)列”,且b1+b2+…+b11=110,則b5•b7的最大值是( 。
A、10B、100
C、110D、200

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別為角A,B,C所對的邊,且b2+c2-a2=
3
bc,則A等于( 。
A、30°B、60°
C、120°D、150°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}滿足an>0,n=1,2,…,a5•a2n-5=22n,(n≥3),則當(dāng)n≥1時(shí),log2a1+log2a3+…+log2a2n+1=( 。
A、n(2n-1)
B、n2
C、(n+1)2
D、(n-1)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

等差數(shù)列{an}中,已知a1=
1
3
,a3+a6=3,an=7,則n為( 。
A、19B、20C、21D、22

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)M在雙曲線
x2
4
-
y2
5
=1上,它到左準(zhǔn)線的距離為2,則它到左焦點(diǎn)的距離為( 。
A、7
B、3
C、
4
3
D、
8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中
AB
=
a
,
BC
=
b
,則
a
+
b
等于( 。
A、
CA
B、
BC
C、
AB
D、
AC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)為F2(3,0),離心率為e.
(Ⅰ)若e=
3
2
,求橢圓的方程;
(Ⅱ)設(shè)直線y=kx(k>0)與橢圓相交于A,B兩點(diǎn),若
AF2
BF2
=0,求k2+
81
a4-18a2
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-3x2+a(5-a)x+b.
(1)當(dāng)a=4,b=15時(shí),解不等式f(x)>0;
(2)若對任意實(shí)數(shù)a,f(2)<0恒成立,求實(shí)數(shù)b的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案