在△ABC,三個(gè)內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,若內(nèi)角A、B、C依次成等差數(shù)列,且不等式-x2+6x-8>0的解集為{x|a<x<c},則b等于( 。
A、
3
B、2
3
C、3
3
D、4
考點(diǎn):等差數(shù)列的性質(zhì)
專題:綜合題,等差數(shù)列與等比數(shù)列,不等式的解法及應(yīng)用
分析:利用等差數(shù)列的性質(zhì),可得B,由不等式-x2+6x-8>0的解集為{x|a<x<c},求出a,c,再利用余弦定理,可得結(jié)論.
解答: 解:∵內(nèi)角A、B、C依次成等差數(shù)列,
∴B=60°,
∵不等式-x2+6x-8>0的解集為{x|a<x<c},
∴a=2,c=4,
∴b2=a2+c2-2accos60°=4+16-2•2•4•
1
2
=12,
∴b=2
3

故選:B.
點(diǎn)評(píng):本題考查等差數(shù)列的性質(zhì),考查解不等式、余弦定理,考查學(xué)生的計(jì)算能力,比較綜合.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={x|x2-2x-3≤0},N={x|y=
x-2
},則M∩N=( 。
A、{x|-1≤x≤3}
B、{x|2≤x≤3}
C、{x|-1≤x≤2}
D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

向平面區(qū)域Ω={(x,y)|0≤x≤π,-1≤y≤1}投擲一點(diǎn)P,則點(diǎn)P落入?yún)^(qū)域M={(x,y)|y>cosx,0≤x≤π}的概率為( 。
A、
1
3
B、
1
2
C、
π
4
D、
π
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果復(fù)數(shù)
2-bi
i3
(其中b∈R)的實(shí)部與虛部互為相反數(shù),則b=( 。
A、2B、-2C、-1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx+ϕ)+b的圖象如圖所示,則S=f(0)+f(1)+…+f(2014)等于( 。
A、0
B、
4025
2
C、
4029
2
D、
4031
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知冪函數(shù)y=f(x)的圖象過(guò)點(diǎn)(
1
3
,
3
3
),則f(4)的值為(  )
A、-2
B、2
C、-
1
4
D、
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)a,b,c均為正實(shí)數(shù).
(Ⅰ)證明:a3+b3≥a2b+ab2
(Ⅱ)當(dāng)a+b+c=1時(shí),證明:(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知P是圓O外一點(diǎn),PA為圓O的切線,A為切點(diǎn).割線PBC經(jīng)過(guò)圓心O,若PA=3
3
,PC=9,則∠ACP=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,已知AB=1,BC=2,CD=4,AB∥CD,BC⊥CD,平面PAB⊥平面ABCD,PA⊥AB.
(1)求證:BD⊥平面PAC;
(2)已知點(diǎn)F在棱PD上,且PB∥平面FAC,求DF:FP.

查看答案和解析>>

同步練習(xí)冊(cè)答案