16、已知A(0,2)與拋物線C:y2=3x,若過點A的直線l與拋物線C有且只有一個公共點,則滿足條件的直線l有
3
條.
分析:根據(jù)點A(0,2)在拋物線y2=3x的外部,得到與拋物線C:y2=3x只有一個公共點的直線l有三條,有兩條直線與拋物線相切,有一條直線與拋物線的對稱軸平行,得到結(jié)果.
解答:解:∵點A(0,2)在拋物線y2=3x的外部,
∴與拋物線C:y2=3x只有一個公共點的直線l有三條,有兩條直線與拋物線相切,有一條直線與拋物線的對稱軸平行,
故答案為3.
點評:本題考查直線與圓錐曲線的關(guān)系,本題解題的關(guān)鍵是忽略與對稱軸平行的這條直線,容易得到有兩條直線,本題是一個易錯題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•浦東新區(qū)三模)已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當(dāng)m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx(0≤x≤
2m
3
)
和橢圓弧
x2
4m2
+
y2
3m2
=1
(
2m
3
≤x≤2m)

(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:浙江慈溪市2012屆高三5月模擬考試數(shù)學(xué)文科試題 題型:044

已知邊長為的正三角形的一個頂點位于原點,另外有兩個頂點在拋物線C:x2=2py(p>0)上.

(1)求拋物線C的方程;

(2)已知圓過定點D(0,2),圓心M在拋線線C上運動,且圓M與x軸交于A,B兩點,設(shè)|DA|=l,|DB|=l2,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當(dāng)m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx和橢圓弧
(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年上海市浦東新區(qū)高考數(shù)學(xué)三模試卷(理科)(解析版) 題型:解答題

已知橢圓C的長軸長是焦距的兩倍,其左、右焦點依次為F1、F2,拋物線M:y2=4mx(m>0)的準線與x軸交于F1,橢圓C與拋物線M的一個交點為P.
(1)當(dāng)m=1時,求橢圓C的方程;
(2)在(1)的條件下,直線l過焦點F2,與拋物線M交于A、B兩點,若弦長|AB|等于△PF1F2的周長,求直線l的方程;
(3)由拋物線弧y2=4mx和橢圓弧
(m>0)合成的曲線叫“拋橢圓”,是否存在以原點O為直角頂點,另兩個頂點A1、A2落在“拋橢圓”上的等腰直角三角形OA1A2,若存在,求出兩直角邊所在直線的斜率;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案