若函數(shù)f(x)=ln(
1+9x2
+ax)為奇函數(shù),則a=
 
考點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì),函數(shù)奇偶性的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意函數(shù)是奇函數(shù),由奇函數(shù)的定義可以得到ln(
1+9x2
-ax)=-ln(
1+9x2
+ax),進(jìn)而得到
1+9x2
-ax=
1
1+9x2
+ax
在函數(shù)的定義域中總成立,即可判斷出a的取值得到答案.
解答: 解:函數(shù)f(x)=ln(
1+9x2
+ax)是奇函數(shù),
∴f(-x)=-f(x),即ln(
1+9x2
-ax)=-ln(
1+9x2
+ax),
1+9x2
-ax=
1
1+9x2
+ax
在函數(shù)的定義域中總成立,
∴解得:a=±3
故答案為:±3.
點(diǎn)評(píng):本題考查對(duì)數(shù)的性質(zhì)及函數(shù)奇函數(shù)的性質(zhì),解題的關(guān)鍵是理解
1+9x2
-ax=
1
1+9x2
+ax
在函數(shù)的定義域中總成立,由此判斷出參數(shù)的取值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

化簡(jiǎn):a2sin810°-b2cos900°+2abtan1125°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)滿足:i)f(x)>0的解集為(0,1);ii)對(duì)任意x∈R都有-3x2-1≤f(x)≤6x+2成立.?dāng)?shù)列
{an}滿足:a1=
1
3
.0<an
1
2
,an+1=f(an)(n∈N+).
(1)求f(-1)的值;
(2)求f(x)的解析式;
(3)求證:
2
1-2a1
+
2
1-2a2
+
2
1-2a3
+…+
2
1-2an
-3n+1≥-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0≤θ≤
π
3
,且cosθ=x-1,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

橢圓的左、右頂點(diǎn)分別為A(-5,0),B(5,0),左、右焦點(diǎn)分別為F1,F(xiàn)2.若|AF1|,|F1F2|,|F1B|成等比數(shù)列,則此橢圓的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知U=R,A={x|2x(x-2)<1},B={x|y=ln(1-x)},則A∩∁UB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y滿足約束條件:
x+y+a≥0
x-y+1≤0
且z=x-ay的最小值為7,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線C:2x2-
2
3
y2
=1
(1)求與雙曲線C共漸近線且過(guò)A(2,-3)點(diǎn)的雙曲線方程;x2-
y2
3
=1
(2)求與雙曲線C有相同焦點(diǎn)且經(jīng)過(guò)點(diǎn)(2,-
3
)的橢圓方程.
x2
8
+
y2
6
=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義在(-1,0)∪(0,1)上的偶函數(shù)f(x),當(dāng)x∈(0,1)時(shí),f(x)=
3x
9x+1

(1)求f(x)的解析式;
(2)若x∈(-1,0)時(shí),f(x)<t恒成立,求實(shí)數(shù)t的取值范圍;
(3)若常數(shù)S∈(2,
20
3
),解關(guān)于x的不等式Sf(x)-1<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案